24小时热门版块排行榜    

查看: 2948  |  回复: 33
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

tang_zm

新虫 (小有名气)

[求助] Fredholm积分方程解的稳定性 已有1人参与

第二类Fredholm积分方程,是否存在解的不稳定性问题,该如何讨论其解的稳定性?相关文献?谢谢!!
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

nagami

木虫 (正式写手)

引用回帖:
10楼: Originally posted by tang_zm at 2014-07-05 16:15:48
些许是我没看懂哈,“存在可数离散的lambda值,就是本征值问题求的那些值”,意思就是齐次方程的特征值去和算子范数做比较,就可以判断方程解的稳定性吗?我是学微波的,临时用到,最近才开始看了些积分方程的书。 ...

数学上微分方程的有个适定性问题,指输入条件,比如初始条件,或者非齐次项。稳定性指当这些条件有微小的扰动,解偏离程度也是小的。
比如以电磁场为例子,你解一个圆形区域的二维helmholtz方程,
(-Δ+k2)u=f,其中,k是常数,边界处u为Dirichlet条件,比如g=0。要问当f有微小变动δf,边界值g有扰动δg时,解f是否能得到控制,比如这样
||u||≤const*(||δf||+||δg||)。
按照上面提到的想法。你需要解对应的本征值问题(-Δ+λ)u=0,一般λ是可数的且逐渐变大到无穷,比如说0<λ1<λ2<...。
因此呢对于上头(-Δ+k2)u=f的问题,除了k2等于本征值点意外的所有k,皆可解且唯一,解满足||u||≤const*(||δf||+||δg||)。
当你的k接近本征值点时,这个const变得很大,导致输入的边界精度看似很高,解的误差可能仍很大。就是数值上的不稳定。但理论是稳定的吧。

其实这个PDE问题等价于第二类Fredholm积分方程问题,你用Green函数可表述出来。
还有以上都是个人臆断,参考下即可。文献倒没有

» 本帖已获得的红花(最新10朵)

女靠衣装;男靠金装
11楼2014-07-05 16:37:38
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 34 个回答

tang_zm

新虫 (小有名气)

求助,期待大师出现啊
2楼2014-06-26 10:43:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

tang_zm

新虫 (小有名气)

顶起,继续求助中。。。
3楼2014-06-27 09:04:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

tang_zm

新虫 (小有名气)

持续求助中。。。
4楼2014-06-30 08:43:32
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见