| 查看: 2948 | 回复: 33 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
[求助]
Fredholm积分方程解的稳定性 已有1人参与
|
||
第二类Fredholm积分方程,是否存在解的不稳定性问题,该如何讨论其解的稳定性?相关文献?谢谢!! |
» 猜你喜欢
垃圾破二本职称评审标准
已经有19人回复
职称评审没过,求安慰
已经有53人回复
毕业后当辅导员了,天天各种学生超烦
已经有5人回复
26申博自荐
已经有3人回复
A期刊撤稿
已经有4人回复
|
数学上微分方程的有个适定性问题,指输入条件,比如初始条件,或者非齐次项。稳定性指当这些条件有微小的扰动,解偏离程度也是小的。 比如以电磁场为例子,你解一个圆形区域的二维helmholtz方程, (-Δ+k2)u=f,其中,k是常数,边界处u为Dirichlet条件,比如g=0。要问当f有微小变动δf,边界值g有扰动δg时,解f是否能得到控制,比如这样 ||u||≤const*(||δf||+||δg||)。 按照上面提到的想法。你需要解对应的本征值问题(-Δ+λ)u=0,一般λ是可数的且逐渐变大到无穷,比如说0<λ1<λ2<...。 因此呢对于上头(-Δ+k2)u=f的问题,除了k2等于本征值点意外的所有k,皆可解且唯一,解满足||u||≤const*(||δf||+||δg||)。 当你的k接近本征值点时,这个const变得很大,导致输入的边界精度看似很高,解的误差可能仍很大。就是数值上的不稳定。但理论是稳定的吧。 其实这个PDE问题等价于第二类Fredholm积分方程问题,你用Green函数可表述出来。 还有以上都是个人臆断,参考下即可。文献倒没有 |

11楼2014-07-05 16:37:38
2楼2014-06-26 10:43:40
3楼2014-06-27 09:04:15
4楼2014-06-30 08:43:32













第二类Fredholm积分方程,是否存在解的不稳定性问题,该如何讨论其解的稳定性?相关文献?谢谢!!
回复此楼
tang_zm