|
|
★★★★★ 五星级,优秀推荐
★ ★ fegg7502(金币+2,VIP+0):thanks
转帖链接见:http://bbs.matsim.com.cn/thread-214-1-1.html
24、问:如何将MS的car文件装换为xyz文件, 坐标比较多。
答:利用MS的 Export 输出为mol 格式的文件
然后利用Hyperchem打开上面的输出文件
另存为xyz文件即可
25、Dmol计算的频率如何看明白啊?
偶用Dmol3算体系的能量,算了其频率,输出文件中一大堆数据看不懂都是什么啊?哪里有详细说明吗?help里好象没有啊。不知道
有这方面的文献吗(中文最好)?请高手们指教啊!
答:性质中频率是算声子的。
最后给出的振动模式 vibrational mode
输出文件主要看outmol文件,文件最后部分有振动频率的数据
如果不是周期体系,且假设体系有N个原子,则给出3N-6个振动频率
其中正值表示稳定振动,负值(虚频)表示不稳定振动,即振动将导致体系能量下降
如果是晶体则有3N个振动频率,其中有3个为刚性振动,频率接近0,表示所有原子沿着相同方向振动。除了振动频率的数值(振模频
率),还有振动的本征矢,每一个频率对应一组本征矢,本征矢表示原子的振动方向(x,y,Z)和幅度。
当发现晶体具有虚频的时候,那么原子按照本征矢方向振动,体系能量下降,会导致结构相变发生。
注意,dmol振动性质的计算并没有考虑电场和原子位移的耦合作用,没有考虑LO和TO分裂,而且对于晶体而言只能算布里渊区G点的
振动频率,而不能计算其他点的振动频率。
完毕
26、问:在计算的过程中CPU利用率变为0,重启以后任务还显示再计算,单CPU 利用就是0,再开始新的任务利用率就不是0 了,这
是为什么?怎么解决阿?谢谢了!
答:虽然软件界面显示在run,但此乃假象也!!cpu为0肯定是没算了。之所以还显示在算,主要原因是你的内存可能不够用了,电
脑不能正确反应实际情况而已。
正常现象,如果交个作业,然后把进程杀了,还显示正常运行,但是运行无法结束
也没有结果。所以看作业是否运行,不单单得看网关的运行状态,还得看cpu的利用率
还有两种可能
第一:就是算完了,网关的内容却没有下载到本地目录。
比如,交一个作业到服务器,算完以后,服务器的cpu利用率变为0,然后
由于网络原因,服务器数据往回传输的时候突然断网,这样可能数据就无法传回来了
由于传送指令发过一次以后,服务器相关的数据目录就发生变化,因此,在网络好的时候选择achieve,可能数据仍是不完整的。
第二:交完作业以后,网络就断了,在这个过程中作业因很多原因死了,cpu利用率为0,此时如果网络好了,在连接服务器,状态不
是完成状态,所以可能一直是runing状态,因此不会有结果。
如果服务器和客户端是一个机器,也可以发生第二种情况。
27、请问:
在CASTEP计算中,k point设置不同,对计算结果有什么影响?
k point设置表示什么?
如设置为4乘4乘4,和设置成9乘9乘6有什么不同,区别在哪?
答:很难一般地回答,只能给出一般建议。注意:一定要检查k网格,首先用较粗糙的网格计算,接下来用精细的网格计算。通过比
较两次的结果,决定选用较粗糙的网格,或是继续进行更精细网格的计算,直到达到收敛。金属体系需要精细的网格,绝缘体使用很
少的k点通常就可以。小单胞需要精细格点,大单胞很可能不需要。因此:单位晶胞内原子数很多(比如40-60个)的绝缘体,可能仅
需要一个(移动后的)k点。另一方面,面心立方的铝可能需要上万个k点以获得好的DOS。对于孤立原子或分子的超晶胞,仅需要在
Gamma点计算。对于表面(层面)的超晶胞计算,仅需要(垂直于表面)z方向上有1个k点。甚至可以增加晶格参数c,这样即使对精
细格点,沿z方向上也只产生一个k点(产生k点后,不要忘记再把c改回)。
k点主要是用来积分计算用的
例如对于连续的波函数,实际的计算是无法采用基于函数的表达式进行计算,而是基于离散数据进行计算,所以需要将空间进行划分
,如果空间中的离散点划分得越细,那么最后通过数值积分得到的结果就越接近体系的真实情况,如果空间的划分越粗糙,计算的结
果越不准确。k点面实际上就是在倒易空间按照a,b,c三个方向进行划分
因此用三个数值表示k点面,第一个数值越大,说明沿着a方向的数值积分点数越多,计算精度越高。在实际计算中,需要进行测试,
一般是逐渐增加k点数,计算能量收敛曲线。
对于表面相关计算,k点面中第三各数值往往取较小,一般为1或2,就是不考虑z轴方向上的周期性。
28、请教:
运行DPD模块,如果运行了1000步,结束后,想继续运行下1000步,怎么办?
是要重新setup中,设定2000嘛?有办法让他在1000步基础上继续运算嘛?
答:Restarting a DPD run
At the end of a DPD run and at specified intervals during the run, DPD saves a restart data file, .Dpd_rst. This
file is downloaded at the end of the run and contains the positions and velocities of all the beads. It enables you
to restart the simulation from part way through or at the end of the previous DPD run.
To restart a simulation
1. Select the mesoscale trajectory document from the run you wish to restart.
2. Choose Modules | DPD | Calculation from the menu bar.
3. Load the parameters from the run you wish to restart, by double-clicking on the associated Settings file
in the Project Explorer.
4. Check Restart.
5. On the Setup tab, choose whether to Reinitialize averages.
6. Change the length of the run.
Note. The time step counter is not reset between simulations. Therefore, the restarted DPD simulation will run for
the Number of steps specified on the Setup tab less the number of steps already completed.
7. If desired, specify new output options, simulation conditions and interaction parameters.
8. Press Run.
Note. The Restart checkbox is enabled only if a restart file is present. However, this file cannot be seen in the
Project Explorer window. You can use the Windows Explorer to verify that the file exists.
Note. When you restart a simulation you can modify some parameters such as the length of the run, output period
options, simulation conditions, interaction parameters, etc. However, others, such as simulation cell size, grid
spacing, cell contents, etc., must remain the same as they were before the restart. These options are disabled when
Restart is checked.
勾选 restart
在点中最后那个.xtd图形文件的条件下,run
你举的例子应该把步数改为 2000
29、求教CASTEP中几何优化问题
1. 几何优化可以在多大范围内改变原子的位置啊?感觉每次优化后的位置调整不是很多啊?
2. 大家在算能带和态密度的时候的时候是用单点能计算给出能带还是几何优化给出能带啊?
另请问WINDOWS版的KEY和LINUX版的KEY能不能混用 求一个MATERIAL STUDIO 4.0的LINUX版本的KEY一个 QQ29988789
十分感谢
答:问题1
几何优化的目的是寻找压力最小的几何结构,原子位置改变不多是因为你建的构形比较合理,比如直接从软件数据库中导入的结构在
0压力下改变很小,如果加个压力就会变化大一些。
问题2
一般都是优化的时候算,如果你想算特定构形的能带或其它性质,就可以用单点能;
30、请问CASTEP计算氧化物磁性,例如CuO的,Modify--------Spin里怎么设置?
Dmol 计算自旋设置时,Multiplicity设置为Auto是系统自动寻找自旋多重度
吗?Multiplicity是设置Auto好,还是设置具体的值好?
答:Multiplicity设置为Auto是系统自动寻找能量最低、最稳定的自旋多重度
31、请教关于MS castep的几个问题
希望各位大侠帮忙,
1 计算表面过程中,计算成功,但是castep结果中提示
------------------------------------------------------------------------ <-- SCF
SCF loop Energy Fermi Energy gain Timer <-- SCF
energy per atom (sec) <-- SCF
------------------------------------------------------------------------ <-- SCF
Initial -1.24983546E+004 5.76278315E+001 55.44 <-- SCF
1 -1.59703259E+004 -1.69750335E+000 2.89330938E+002 197.97 <-- SCF
Warning: There are no empty bands for at least one kpoint and spin; this may slow the convergence and/or lead to an
inaccurate groundstate. If this warning persists, you should consider increasing nextra_bands and/or reducing
smearing_width in the param file. Recommend using nextra_bands of 11 to 24.
2 -1.62762609E+004 -6.23532889E+000 2.54945870E+001 356.62 <-- SCF
Warning: There are no empty bands for at least one kpoint and spin; this may slow the convergence and/or lead to an
inaccurate groundstate. If this warning persists, you should consider increasing nextra_bands and/or reducing
smearing_width in the param file.Recommend using nextra_bands of 11 to 24.
2 要在表面上吸附小分子,如H2 ,或者CO,可以选择不同的位置,比如top, bridge, 等,但是如何确定具体每个原子的position?
直接根据原子半径按照几何知识来计算吗?另外在计算表面吸附total energy的时候,是否选择上"optimized cell" ?
如果不选择,就应该是每个原子的位置保持固定,那么如何知道所确定的吸附原子的位置是对的呢?
3 进行计算时选择上"spin polarized", 对于不同元素,其参数如何设置?"initial pin"和"charge"。
答:A、你把empty band里的空带数目增加试试或者减少smearing 的数值,这两个办法都可以增加精度。
你先把晶胞优化完成后再算吸附,只是注意两次计算所用方法要一致。确定原子的position是要根据能量高低来确定。
B、第一个文标题: 从他提示的关键词来看
NEXTRA_BANDS
This keywords controls the number of extra bands in addition to the number of occupied bands. These extra bands are
necessary for metals or finite temperature insulators. The default value for this parameter is 0.
SMEARING_WIDTH
This keyword determines the width of the Fermi-surface smearing if the system is being treated as a metal.
因为不知道你的具体物质,所以我猜测有两种情况,一是你的结构有问题。二是因为你的结构的特殊性,所以你默认的设置计算是不
可信的,就如提示而言。如果你的结构没问题,你可以按照提示调整一下参数算一算。
.param为后缀名的文件里,有以上两个参数,你打开调整一下,然后计算你调整后的文件,就是点Files,然后Run Files。如果你调
整后没有提示,就说明你的结构需要调整参数。
第二个问题
原子在表面吸附就那么几种位置,你都要计算试一试,找到能量最小的吸附位置。至于吸附原子放在什么位置,你可以通过原子半径
计算,这样计算能加快你的收敛速度。如果不是计算,而是大致放个位置,收敛就和你放的位置有关,如果放的位置很接近收敛位置
,就会很快收敛。因为这这两种方法最终的计算收敛后,他们的位置应该是一样的(误差范围之内)。至于计算表面吸附total
energy的时候,是选择"optimized cell"还是固定表面,我看文献上这两种都有,因为这要和你计算的体系有关,如果体系不是很大
,应该选择optimized cell,这样更近现实验情况。
第三个问题,initial Spin设置,MS提供两种方法,你可以参考。
There are two ways of defining the initial magnetic configuration: either specify the total magnetic moment per unit
cell, which gets uniformly distributed over the space, or provide detailed information on the absolute values and
direction (up or down) of the spins for each atom in the unit cell. The former method can be used for relatively
simple systems where only two solutions are expected (magnetic and non-magnetic). The latter method, which specifies
the spin state of the atoms in the system, is more general and gives much more flexibility. It is possible to set up
ferromagnetic, ferrimagnetic, or antiferromagnetic calculations to get different starting spin arrangements.
不过我记得好像他们公司说过,一般formal spin都可以,除非是计算一些磁性物质,比如Fe、Co这种。目前我都是默认。至于
charge就是系统的电荷,如果不带电就是0,实际是多少就是多少。
自己的一点拙见,仅供参考
C、问题3
MS中的帮助文件中的内容是:
The initial value of the spin moment is quite important for spin-polarized calculations. It should be as close as
possible to the expected value. You can evaluate the spin moment using the high-spin approximation combined with
formal charges. For example, if there are ten Fe3+ ions in the system, you assume that each of them has a valence
electronic configuration of d5 (the neutral configuration is s2d6) which corresponds to five unpaired electrons per
Fe ion. The initial spin value for the CASTEP calculation is therefore fifty.
我如果计算Ni, s2d8 应该是2个 unpaired electrons, 所以,设置2*supercell中的Ni个数, 对吗?
D、通常磁性物质需要考虑spin是因为体系中有unpaired electrons。所以spin=unpaired electrons+1,是根据有无未配对电子设置
。你可以几种都试试,以能量低的为准。
E、从帮助的说明来看,应该是设置2*supercell中的Ni个数
另外就是注意你是周期性系统,边上、角上的原子不能算做一个原子,可能有的只是半个会四分之一个。
F、1 这样的提示我在计算掺杂Eu的体系中也见到过,当时也增加了empty bands,另外smear值有人说调大有人说调小,反正我都试了试
,效果都不是很好.我想可能是结构的原因,结构如果不合理的话其他调整不是那么明显.
另外也想补充个问题:我发现跟我没有调整这两个参数的计算结构比较,无论是band structure还是dos结果都有变化,不知道那样才是
合理?
2 我看到一些资料表面吸附时,通常的做法是把结构先optimized cell,然后用优化后的结构参数吸附分子模拟.位置先估计一下,然
后限制下层原子位置,表面的可以弛豫.
3 "spin polarized"的设置我就没怎么接触过了,看lz提供的ms帮助,受教了,谢谢
G、第二个问题:
吸附时每个吸附位都要考虑,而初始位置到底是怎么样的,一方面要看文献有没有类似的计算,另一方面就是经验的问题了。
在晶胞优化的时候才选上"optimized cell",而在计算表面吸附的时候是不能选的。至于固定几层原子,这和你的体系大小有
关,一般来说体系越大就可以多固定几层,体系小就少固定几层,固定原子越多,计算效率就高,花费时间相对就较短,这与你的初
始构型也是相关的,构型好计算就快。如果是在不知道固定几层,就参考文献值,总不会错的,或者固定一半(小体系)或三分之二
(大体系)。
F、总结一下:
问题1
基本上是找到了问题,而且必须解决,通过软件的提示和大家的讨论,可以增加bands或者减小smearing,我会先试试减小smearing
,看看结果如何
问题 2
看来大家大多数认为在吸附的relax过程中不选择optimized cell,原子的位置靠几何计算得到。我先这样试试,但是我还有一点疑
虑,就是如果不选择optimized cell,吸附分子或者原子的位置是不是就保持固定了呢?csfn认为位置也不是保持固定,大家有经验
的可以谈谈。我算完之后其实测量一下就知道到底固定不固定了:)
问题3
争议还比较大,
1 不设置,保持默认,但是默认的initial spin是0,这样不知道对不对?
2 设置spin=unpair electron+1,这个不知道是什么意思?有没有具体文献。
3 按照帮助文件设置,但是要考虑计算中超胞中很多原子是共用。
I、问题2
“但是我还有一点疑虑,就是如果不选择optimized cell,吸附分子或者原子的位置是不是就保持固定了呢?”
这个我应该说可以肯定的,吸附分子或者原子的位置是没有保持固定的,但是你的的单包的体积和形状是改变的,假设你是a,b,c
为10,10,10的边长,优化过后,还是10,10,10。但是你选择“optimized cell”,你会发现变化,可能是9,9,9或者是11, 11
, 11,就是说这个盒子的边长,体积等都在变化了。那么不管你选择还是不选择这个选项,你的原子都是没有固定的。固定的只有
两个情况可以固定,一个是对每个原子采用了固定的设置,这个是一个小技巧,你不去操作是不会自动加上的。第二个是你选择任务
的时候,没有选择结构优化的任务,比如算能量,那么这个时候结构不优化当然原子坐标不变化。应该是比较清楚了吧 这些我是可
以肯定的,不大信的话,你可以做一个小体系测试嘛。
问题1,和问题2,你自己判别了,好像不是什么问题了。总之这个软件是比较智能化了,只要你的结构设置合理,吸附的位置放置合
理,不太离谱,一般来说计算采用它的默认设置都是比较好的。
J、spin=unpairi electron + 1,是来自量子化学或者第一性原理计算本身,说明书中不会有介绍。可以参看原子物理学关于角动量
耦合的章节或者读读潘道凯的物质结构。实际上spin=从1到unpairi electron + 1的所有可能值,这是因为实际上我们事先不能肯定
它们已经配对。到底最终选择哪个数值需要看能量确定。在CASTEP中考虑spin主要是因为需要处理掺杂、磁性、以及吸附离子等电子
没有完全配对的情况。
K、我讲讲我做化学表面反应计算的步骤吧:
1 晶胞优化;就是搭建你要的基底晶胞并进行优化,这个时候选中optimized cell,这时会给你优化的晶胞参数,以后就不要在去管
了;
2 切面:一般是切低指数表面,优化表面后计算表面能.表面切几层,这要根据实际情况分析,我上面说过,层数越多计算量越大,
同时还要看你固定几层,这个楼上的说得比较详细,只是我看了下文献,好像两个表面的比较少。一般表面能越低,表面越稳定。
3 吸附:把吸附原子或分子放到目标基底上,这个初始结构很重要,给得好则很快收敛,否则收敛很慢甚至不收。初始构型也要多方
面考虑,各个吸附位各种吸附构型还有不同基底等等。
一般最好是先算构型优化,再算能量及DOS等其它性质,计算速度要快一点吧。至于其它参数例如自旋(看你的体系有没有单
电子)等的设置,一般参考文献就好。
L、这些问题已经基本解决,谢谢大家关注!
问题1, 改变empty band的值,按他的要求设置到11-24,就可以解决,但是单纯减小smearing的值似乎解决不了...
问题2 uncheck 'optimized cell"
问题3 好像这个参数并不是影响很大,因为这只是个初始值, 欢迎大家继续套路讨论这个问题,有什么经验的说说吧
M、问题1
我也碰到过这样的问题,一般只要按提示要求改一下空带个数就可以了
问题2
一般是先优化胞,再切表面,加上吸附原子,再优化,第一次优化要选optimize cell,第二次不选,一般要固定最底层的几层原子;
加原子时,如在bridge时,与表面平行的方向上的坐标为表面上两最近邻原子的中点,垂直方向上自己根据实验值或其它的估计,估
计不好就多算一会,top位置就在表面原子的正上方;
问题3
一般算的胞的所有原子的电子个数和是奇数是选spin polarized,偶数时不选;算磁性的时候就看情况了,那两格参数一般不用设置
,如果不是带电体的话
32、怎么可以计算比较准确的扩散激活能?用TS RESEARCH 算的时候所有的基体原子都不能移动,与实际过程不同,得到的激活能准
确嘛?有什么方法可以解决这个问题嘛?
谢谢赐教!
答:A、做表面相关的计算不能优化cell把,如果优化cell的话基本上是算不了了
表面+真空层,晶胞体积太大,算不动的。
一般是先优化晶胞的平衡构型,然后在切表面,
在进行相应计算
B、谢谢各位的建议!可是我想算体扩散,比如在H在Ti中的扩散,先优化含氢的一个构形,再优化另一个构形,可是它要求所有基体
原子不动,只有扩散的原子运动,所以优化的时候就得让基体原子都不动,我不知道这样算的结果是不是合理
C、体扩散应该难度不大,个人认为远离H的原子可以固定,在H附近的原子不能固定,要不然结果可能不具有可信度。如果不好确定H
附近的原子,则建议全部不固定。
D、楼主说的有点像渗碳 渗氮。这是一个扩散穿质的过程,解一个二阶偏微分方程,解的准确性关键在一些系数的选取,像扩散系数
D。不知道第一性原理能不能算这种很具体的系数。
33、请教DMol3 Calculation 出现的问题
我是新手,DMol3 Calculation 点Run后出现一个对话框
Failed to create job for the server: DMol3.
No default location defined for server DMol3.
Use Server Console to specify a gateway.
答:A、网关没有启动,或者被防火墙拦截了。
如果是winxp系统,把系统防火墙关闭,如果还有杀毒软件的防火墙,
第一次运行,要允许Apache.exe等访问网络
还有一个可能就是你安装的只是客户端,而没有安装服务器段
如果全部都安装的话,第一次运行你可能没有让网关启动。
B、根据我的经验如果在安装的时候没出什么错误的话是不用重装的,这可能是serve console里面出错了,你试试把以前的sever删
掉,再新建一个,选服务器(如果是自己的机子就输入你的计算机名),在这之前确保网络是通的,防火墙关掉(WINDOWS自带的也
关掉),装完之后test一下。如果这样不行的话,你可以在cmd命令行中输入:ping IP地址,看一下网络是否是通的;ping 服务器
名字,看一下名称解析是否有问题。出现这种问题往往是由于网络的问题,比如在运行任务的时候,修复一下IP地址,马上会出现问
题。奇怪的是在服务器是自己的电脑的情况下,在新建SERVE 的时候也必须关掉防火墙。
C、可如果有防火墙的话,到防火墙里面开启相关项如Apache.exe,alg,lmgrd,perl,msi等,看看行不
34、请问能在castep中得到内聚能吗?怎样得到,请高手指教,谢谢
答:1。如果是结合能,castep和dmol都可以算
dmol能直接给出结果,在outmol文件中。
castep得自己算。
算法:晶体的总能量(final energy)-(N1×晶胞中原子1个数原子+N2×晶胞中原子2个数原子+。。。。),就是原子成键后导致
体系的能量下降。
原子的能量在.castep文件开始算赝势的地方找。
35、请教MS中切面几何优化和原子之间的配位
1.我用MS-中DMol3切面做几何优化,假如主族氧化物A2O3,切三层,五层,七层,分子式分别为A8O16,A16O28,A24O40,五层优化始终
不收敛,设置自旋激化,和无自旋激化都试了就是不收敛,其他都是默认值。请问应该怎样设置?为什么?
2.体相O是四配位的,A是六配位的,切面时第一层是O第二层是A出现两种情况,一种O是两配位,A是六配位,另一种O是两配位,A有
四配位和五配位,做吸附气体小分子哪种切面好,为什么?
谢谢指教
答:A、你看一下你的输出结果,看一看他的收敛程度
如果没有收敛,那就改变一下结构试一试
如果一直是往收敛的方向走,那就增大一下SCI cycles 试一试
也许在多进行几步SCI 就可以收敛
第二问题,这两种情况你都要计算
进行比较,找出最有利的吸附构型,具体那个面容易吸附
积要看你的吸附体,也要看你的吸附质
不同的物质不一样
一般情况下,容易发生在晶面间距较大的面
B、SCI设置为1000轮了,就是每次几何优化第九轮时自洽迭代不收敛,一会儿变小,一会儿变大,不收敛.Smearing为0.005或0.0
1都试了不收敛.还可以调什么参数?就是想计算表面能看选五层还是七层就可以,选层方面有其他方法确定吗?
选100面晶面间距是较大,吸附小分子CO,NO,NO2,N2O,H2
CH4等应该选哪种面?
C、如果这样,五层每次都是第九步不收敛,我觉得可能有一下几方面原因,(自己的拙见,仅供参考):
一、再检查一下你的结构是不是有问题,七层都可以收敛,说明你的计算机是满足要求的。不会能因为内存不足等原因。建议你先用
半经验优化一下,然后再用Dmol优化,这样l优化后的结构Dmol再优化会收敛快一些,也比较容易收敛。
二、循环次数你已经增大了,如果是你说的一会变大,一会变小,那就是结构在震荡,也有可能说明这个表面结构就是不稳定的。
如果不行,只能调节收敛精度了。
至于选层,没有什么具体要求,一般都是3-6层,这样要你自己计算,一般都是把基层都优化以下,看看表面结构影响到几层。比如
,你有优化的3层,4层结构,发现第三层、第四层对表面影响很小,计算到第三层就可以了。
至于吸附,选什么面。一般情况下首先晶面间距较大的面。但也要具体问题具体分析。比如对CO,一方面看表面是C吸附,还是O吸附
,还要看是金属吸附还是O吸附,
他们会选择最有利于吸附的晶面。比如是金属吸附C,那就会选择含金属原子比较多的面。
D、跟smearing 设置有关,你可以试一下
smearing从小逐渐增大,就收敛了。不过smearing太大,最后优化的构型可能会有问题。DMOL优化不收敛,一般得设置smearing,你
可以看outmole文件,里面如果不收敛的话会有体系你修改什么参数的。
好运
36、请教用MS计算半导体氧化物的能带时怎样设置路径?
用MS计算半导体氧化物的能带时,More按扭里有K点Path给出有G(0 0 0),F(0 0.5 0),Q(0 0.5 0.5),Z(0 0 0.5),B(0.5 0 0).其自动
的路径是G-F-Q-Z-G,但是得到的能带很乱,请高手指点怎样设置路径能够好些?
答:A、实际能带结构应该是4维图像,而从对称性来考虑,我们关心的仅仅是一些高对称点之间的能量分布,所以一般的结构都是给
出的2维图像。再者,通常意义上能带结构中k-point的数值只有相对的意义。
能带关系就是E_k关系,所以如果在CASTEP中把能带图export成数据格式的话,看到的两列数据分别是k和能量。k对应的数值
如何理解,这个好像不同软件包做法并不一样。CASTEP中将所选的所有bandline也就是kpoint-path的长度定义为一,不同区域的宽
度(kpoint-path)对应两个高对称点的相对距离。
如果你使用的是Castep自己默认的,那么他确认的都是高对称k-point,得出的图像E和K-point应该是对应的。你可以自己设
置,但是这样计算,你的出的DOS是不可用的。
你检查一下你的模型是不是有问题
最好能够把你的图传上,这样好分析原因
B、最后的方法就是所有的点都两两相邻,
比如系统有G,X,M,R四个点
路径如下G-X-M-G-R-X-M-R所有的点都两两相邻
这样反应能带的信息更全一些。
37、请教MS里面的图怎样复制到WORD里面来?
我在MS计算出的图中点复制,然后在WORD 里面粘贴出来的 是一些数据,请问改如何操作呢?谢谢
答:1、你可以利用这些数据在Origin里作图,这种方法你可以调解坐标轴,坐标。然后把Origin里的图拷贝到Word里。
2、利用MS的File菜单下的Export,将你要的图形输出为图形,好像只能输出为bmp格式,然后插入到你的Word里
3、就是利用一些抓图软件,我常用的是UltraSnap,通过抓图软件将你要的图形粘贴到Word里
38、请教
主族金属氧化物切面做吸附小分子要不要考虑自旋极化?
不吝指教
答:A、这个不好说
要看你计算什么物质
自旋极化对他们有没有影响,如果有影响必须考虑
如果没有影响,或影响很小,可以忽略
B、假如A2B3,是主族的,切面三层分子式为A6B12,五层A12B21,七层是A18B30,都不是A2B3的整数倍,考虑自旋极化,五层七层不收敛,是
不是不用自旋极化?
还有要是不用自旋极化,如果做吸附NO,NO 分子有单电子那要不要考虑自旋激化?
谢谢指点!
C、不收敛和用不用自旋极化应该没有关系,不收敛应该检查Cut-off energy、smear、 Band数、体系是否合理等问题
39、请问各位大侠,在很多文章中都可以看到电荷密度图
这是怎么来的?
如何在CASTEP中实现电荷密度图示????
答:A、电荷密度图在ms里面是很容易实现的,首先你在选择计算任务的时候,找到电荷密度的单词,然后选中进行计算。
算完以后,你在分析的时候,选择分析电荷密度,就可以看到电荷密度图示。既可以调节2d也可以看3d的图。
如果你是vasp算的电荷密度图,那么就要程序转换成ms认识的格式,才能导入到ms里面看了,一样是2d和3d都能显示。如果你用
lev00处理,当然也行,那就是origin直接画图,一般可能是等高图多。
B、view--->toolbars--->volume visualization, 可以调出creat slices,这样就可以选择2D 的electron density,然后选中这个
slice,在properties中修改 slice crystal direction(修改所取面的晶向),修改slice fractional postion(修改你所取的面的确
定位置),然后从工具栏选择color map, 即可得到想要的面的电荷密度
40、关于价态的问题
我算了一下TiO2的结构
但是它给出的结果如下:
Species Ion s p d f Total Charge (e)
==============================================================
O 1 1.87 4.79 0.00 0.00 6.65 -0.65
O 2 1.87 4.79 0.00 0.00 6.65 -0.65
O 3 1.86 4.78 0.00 0.00 6.65 -0.65
O 4 1.86 4.78 0.00 0.00 6.65 -0.65
O 5 1.84 4.80 0.00 0.00 6.64 -0.64
O 6 1.84 4.80 0.00 0.00 6.64 -0.64
O 7 1.84 4.80 0.00 0.00 6.64 -0.64
O 8 1.84 4.80 0.00 0.00 6.65 -0.65
O 9 1.84 4.78 0.00 0.00 6.62 -0.62
O 10 1.84 4.78 0.00 0.00 6.62 -0.62
O 11 1.84 4.78 0.00 0.00 6.62 -0.62
O 12 1.84 4.78 0.00 0.00 6.62 -0.62
Ti 1 2.24 6.25 2.23 0.00 10.72 1.28
Ti 2 2.24 6.25 2.23 0.00 10.72 1.28
Ti 3 2.21 6.24 2.24 0.00 10.69 1.31
Ti 4 2.21 6.24 2.24 0.00 10.69 1.31
Ti 5 2.25 6.26 2.18 0.00 10.69 1.31
Ti 6 2.25 6.25 2.19 0.00 10.68 1.32
Ti 7 2.25 6.26 2.18 0.00 10.69 1.31
Ti 8 2.26 6.27 2.17 0.00 10.70 1.30
理论上说:Ti应该是+4价,O是-2价,为什么才是-0。6和1。3多呢?
希望高手指教
答:A、你说的是一个分子式 的价态,而计算的结果是一个晶胞上每个原子均匀分得的电子量是晶胞能量最低的优化结果,从计算结
果可以看到即使是同一个原子价态也不同,这是由于各个原子在空间分布不同。
B、离子键或者共价键之类的吧,共用电子的程度不同.
另外也顺便有个疑问:改变某原子的电荷在计算中有影响吗?
C、这个是否与你定义的原子的半径有一定的关系,如果你定义的O的原子半径大,则所带的电量就大,反之亦然。不知道MS里面是不
是这样,不过VASP里面是这样的
D、前面说的是设置问题
关于你说的计算结果,理解是这样的:
以O1为例子
Species Ion s p d f Total Charge (e)
======================
O 1 1.87 4.79 0.00 0.00 6.65 -0.65
计算以前O1的电子结构是 2s2 2p4, Total =6(e )
计算后O1的结构变为2s1.872p4.79,Total =6.65(e )
-0.65 表明优化以后,O1得到0.65(e )
E、如果考虑的是纯离子,当然就是+4和-2了。
但是由于Ti和O之间形成共价键,价带不是完全有O原子轨道构成
而是有O原子和Ti原子轨道贡献构成。这部分贡献可以通过PDOS可以分析出来。
CASTEP中PDOS面积表示电子数。
也就是由于形成共价键,导致价带有Ti原子的贡献,当电子在价带上填充时
填充在价带中Ti原子所贡献的那部分态上的电子划归为Ti原子的电子,这样
由于价带不是纯O原子的轨道贡献,当然不可能得到2个电子,所以也就不可能是-2价。
如果Ti和O是纯离子,也就是Ti的原子轨道在价带上对O轨道的贡献可以忽略,这时候
才可能打到+4和-2价。
由于Ti-O之间是共价键,所以O和Ti不可能为-2和+4价。
[ Last edited by csfn on 2008-4-21 at 21:27 ] |
|