|
|
[资源]
Science最新综述:太阳光合成---可见光光催化的前景展望
最新一期的Science杂志刊发了题为Solar Synthesis: Prospects in Visible Light Photocatalysis的综述,介绍了可见光光催化,尤其是有机物的光合成等领域近年来的研究进展,并对该领域进行了展望。文章9页,涉及的范围包括:Mechanisms of Visible Light Photocatalysis,Photogeneration of Organic Radicals,Photocatalytic Activation of Amines,Photogenerated Radical Ions以及Triplet Alkenes。
Background
Interest in photochemical synthesis has been motivated in part by the realization that sunlight is effectively an inexhaustible energy source.Chemists have also long recognized distinctive patterns of reactivity that are uniquely accessible via photochemical activation. However, most simple organic molecules absorb only ultraviolet (UV) light and cannot be activated by the visible wavelengths that comprise most of the solar energy that reaches Earth’s surface. Consequently, organic photochemistry has generally required the use of UV light sources.
Advances
Over the past several years, there has been a resurgence of interest in synthetic photochemistry, based on the recognition that the transition metal chromophores that have been so productively exploited in the design of technologies for solar energy conversion can also convert visible light energy into useful chemical potential for synthetic purposes. Visible light enables productive photoreactions of compounds possessing weak bonds that are sensitive toward UV photodegradation. Furthermore, visible light photoreactions can be conducted by using essentially any source of white light, including sunlight, which obviates the need for specialized UV photoreactors. This feature has expanded the accessibility of photochemical reactions to a broader range of synthetic organic chemists. A variety of reaction types have now been shown to be amenable to visible light photocatalysis via photoinduced electron transfer to or from the transition metal chromophore, as well as energy-transfer processes. The predictable reactivity of the intermediates generated and the tolerance of the reaction conditions to a wide range of functional groups have enabled the application of these reactions to the synthesis of increasingly complex target molecules.
Outlook
This general strategy for the use of visible light in organic synthesis is already being adopted by a growing community of synthetic chemists. Much of the current research in this emerging area is geared toward the discovery of photochemical solutions for increasingly ambitious synthetic goals. Visible light photocatalysis is also attracting the attention of researchers in chemical biology, materials science, and drug discovery, who recognize that these reactions offer opportunities for innovation in areas beyond traditional organic synthesis. The long-term goals of this emerging area are to continue to improve efficiency and synthetic utility and to realize the long-standing goal of performing chemical synthesis using the sun.
/![Science最新综述:太阳光合成---可见光光催化的前景展望]()
F1.medium.gif |
» 本帖附件资源列表
» 收录本帖的淘帖专辑推荐
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
» 本主题相关价值贴推荐,对您同样有帮助:
|