| 查看: 857 | 回复: 3 | ||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||||
lala1008金虫 (著名写手)
多愁善感,桀骜不驯,自强不息
|
[交流]
What is the difference between a theorem, a lemma, and a corollary?已有3人参与
|
|||
|
转自 : http://liveness.diandian.com/post/2012-05-24/20208946 Definition — a precise and unambiguous description of the meaning of a mathematical term. It characterizes the meaning of a word by giving all the properties and only those properties that must be true. Theorem — a mathematical statement that is proved using rigorous mathematical reasoning. In a mathematical paper, the term theorem is often reserved for the most important results. Lemma — a minor result whose sole purpose is to help in proving a theorem. It is a stepping stone on the path to proving a theorem. Very occasionally lemmas can take on a life of their own ( Zorn’s lemma, Urysohn’s lemma, Burnside’s lemma, Sperner’s lemma). Corollary — a result in which the (usually short) proof relies heavily on a given theorem (we often say that “this is a corollary of Theorem A”). Proposition — a proved and often interesting result, but generally less important than a theorem. Conjecture — a statement that is unproved, but is believed to be true ( Collatz conjecture, Goldbach conjecture, twin prime conjecture). Claim — an assertion that is then proved. It is often used like an informal lemma. Axiom/Postulate — a statement that is assumed to be true without proof. These are the basic building blocks from which all theorems are proved ( Euclid’s five postulates, Zermelo-Fraenkel axioms, Peano axioms). Identity — a mathematical expression giving the equality of two (often variable) quantities ( trigonometric identities, Euler’s identity). Paradox — a statement that can be shown, using a given set of axioms and definitions, to be both true and false. Paradoxes are often used to show the inconsistencies in a flawed theory (Russell’s paradox). The term paradox is often used informally to describe a surprising or counterintuitive result that follows from a given set of rules ( Banach-Tarski paradox, Alabama paradox, Gabriel’s horn). 定义(Definition)、定理(Theorem)、命题(Proposition)和引理(Lemma)相互关系与区别 定义和公理是任何理论的基础,定义解决了概念的范畴,公理使得理论能够被人的理性所接受。 定理和命题就是在定义和公理的基础上通过理性的加工使得理论的再延伸,我认为它们的区别主要在于,定理的理论高度比命题高些,定理主要是描述各定义(范畴)间的逻辑关系,命题一般描述的是某种对应关系(非范畴性的)。而推论就是某一定理的附属品,是该定理的简单应用。 引理就是在证明某一定理(或命题)时所用到(或计算得到)的其它定理(或结果)。 在实际论文过程中应用较多的是定义、引理和命题。一般的情况是先(计算)推导出一些重要的引理,然后依据一些引理及其他得到一些命题。引理更多是确定的性解或重要结果,命题更多的是一些描述性的结论 |
» 收录本帖的淘帖专辑推荐
论文写作投稿与排版 |
» 猜你喜欢
职称评审没过,求安慰
已经有15人回复
垃圾破二本职称评审标准
已经有11人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有16人回复
谈谈两天一夜的“延安行”
已经有14人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
EST投稿状态问题
已经有4人回复
聘U V热熔胶研究人员
已经有10人回复
求助文献
已经有3人回复
投稿返修后收到这样的回复,还有希望吗
已经有8人回复
三无产品还有机会吗
已经有6人回复














回复此楼