| 查看: 1427 | 回复: 12 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
felix2018铁杆木虫 (正式写手)
|
[求助]
各位学泛函的大神们请进!有六道小题希望可以帮忙! 已有2人参与
|
|
此六道题都是泛函分析的习题,希望各位大神可以帮帮忙!( 由于自己输入的问题,所以在括号做了个解释! )1.show that if x is compact,then given ε<0,there exist a finite set of points{xi}∈X,(i为下标)can be approximated to within ε by one of the xi for each x∈X,there is an xi such that |x-xi|<=ε 2.if Ωis bounded,what is the completion of Cc0 (空间下标c上标0)in the supremum norm?deduce that C2 0(空间下标2上标0)is not a banach space with this norm,treat similarly the case Ω=R m(m维欧式空间) 3.show that given s∈S(Ω),1<=p<∞,and ε>0,there exists an f∈C2 0(上标0下标2),such that ||f-s||Lp<ε(下标Lp空间),such that any point x∈X 4.let kㄈH(k属于H),be a convex cone with vertex at 0.i.e,0∈k and λu+μv∈k,any λ,μ>0,any u, v∈k,assume in addition that k is closed.given f∈H,prove that u=Pk f (f在k上的投影)in characterized by the following properties.any u∈k,(f-u,v)<=0,any v∈k and (f-u,u)=0 5.let Ω be a measure space and let h:Ω→[0,∞) be a measurable function .let k={u∈L2(Ω),|u(x)|<=h(x),a.e.on Ω}(2为上标L2空间)check that k is a nonempty closed convex set in H=L2(Ω).determine Pk. 6.let cㄈH be a nonempty closed convex set and let T:c→c,be a monlinear contraction i.e |Tu-Tv|<=|u-v|,any u,v∈c 1)let {un}(n为下标)be a sequence in c such that un→u weakly and |un-Tun|→f Strong prove that u→Tu=f 2)deduce that if c is bounded and T(c)ㄈc,then T has a fixed point. [ Last edited by felix2018 on 2013-12-21 at 10:19 ] |
» 猜你喜欢
基金申报
已经有4人回复
计算机、0854电子信息(085401-058412)调剂
已经有4人回复
国自然申请面上模板最新2026版出了吗?
已经有9人回复
溴的反应液脱色
已经有6人回复
纳米粒子粒径的测量
已经有7人回复
常年博士招收(双一流,工科)
已经有4人回复
推荐一本书
已经有10人回复
参与限项
已经有5人回复
有没有人能给点建议
已经有5人回复
假如你的研究生提出不合理要求
已经有12人回复

felix2018
铁杆木虫 (正式写手)
- 应助: 6 (幼儿园)
- 金币: 6838.8
- 散金: 390
- 红花: 9
- 帖子: 872
- 在线: 106.2小时
- 虫号: 2736601
- 注册: 2013-10-19
- 性别: GG
- 专业: 数学

13楼2013-12-23 10:57:35
liuhaidong
木虫 (著名写手)
- 应助: 27 (小学生)
- 金币: 882.7
- 散金: 4112
- 红花: 13
- 帖子: 1694
- 在线: 701.5小时
- 虫号: 705866
- 注册: 2009-02-22
- 专业: 偏微分方程
2楼2013-12-21 12:06:43
felix2018
铁杆木虫 (正式写手)
- 应助: 6 (幼儿园)
- 金币: 6838.8
- 散金: 390
- 红花: 9
- 帖子: 872
- 在线: 106.2小时
- 虫号: 2736601
- 注册: 2013-10-19
- 性别: GG
- 专业: 数学

3楼2013-12-21 12:34:56
感谢参与,应助指数 +1
|
本帖内容被屏蔽 |
4楼2013-12-21 13:02:19












由于自己输入的问题,所以在括号做了个解释!
)
回复此楼