24小时热门版块排行榜    

CyRhmU.jpeg
查看: 1826  |  回复: 7
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

新手菜鸟1818

金虫 (小有名气)

[求助] 常微分方程求解公式

虫友们,如下方程(如图2)的解是什么形式的?

初值为图1所示。

其中,X为向量函数,A为常数矩阵,f(x)是向量函数。
常微分方程求解公式
2.jpg


常微分方程求解公式-1
1.jpg
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

感谢参与,应助指数 +1
这种方程除了版主所提的拉氏变换方法外,稍微麻烦些、但最直接的方法就是常数变易法,这在高等数学中已经讨论过它的求解公式,就在同济大学 第六版的上册第311页上,请楼主查看和参阅。
5楼2013-12-01 17:17:32
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
新手菜鸟1818: 金币+10 2013-12-01 17:52:49
接2楼版主的计算结果:
   X(s)=x0/(s-A)+F(s)/(s-A)
对上式进行逆变换。
运用拉氏变换的位移性质,上式中前者的拉氏反变换为x0*exp(A*t);
再运用拉氏变换的位移性质和卷积性质,上式中后者的拉氏反变换为:
   Integral{f(ξ)*exp[A*(t-ξ)]*dξ , 0 ,t},  故:
   x(t)=x0*exp(A*t)+Integral{f(ξ)*exp[A*(t-ξ)]*dξ , 0 ,t}

解题完毕。
6楼2013-12-01 17:30:59
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 新手菜鸟1818 的主题更新
信息提示
请填处理意见