24小时热门版块排行榜    

查看: 1265  |  回复: 16
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

fengweiche

木虫 (小有名气)

浪子

[求助] 求解一方程,急需各位大侠帮助

dC/dt = a*C+b*C^n,a,b,n为常数,求C与t的关系,用t的表达式代表C, 多谢!
回复此楼
心有多远,就能飞多远!
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

peterflyer

木虫之王 (文学泰斗)

peterflyer


引用回帖:
13楼: Originally posted by fengweiche at 2013-11-07 16:33:07
A是怎么来的   和楼上怎么又区别  我拟合了一下与想要的规律相反,是不是哪把正负号搞反了...

A是积分常数,是在求解一阶线性非其次微分方程时积分带来的,这在任何常微分方程教程中均有述及,楼主可以翻看一下相关教材。接到你的来信我立即进行了验证,结果证明所求出的这个解的确是方程的解。若计算结果与实验结果不符,应该是你的微分方程对问题的描述出问题了。我的求解是针对你的方程的,若方程有问题那是楼主自己的问题了。
15楼2013-11-07 18:13:19
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 17 个回答

wurongjun

专家顾问 (职业作家)

【答案】应助回帖

★ ★ ★
感谢参与,应助指数 +1
fengweiche: 金币+3, 有帮助 2013-11-06 10:05:45
C(t)=exp(-log((-b+exp(-a*t*n+a*t)*d1*a)/a)/(n-1))
其中d1为任意常数!

» 本帖已获得的红花(最新10朵)

善恶到头终有报,人间正道是沧桑.
2楼2013-11-05 23:32:54
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

feixiaolin

荣誉版主 (文坛精英)

优秀版主

【答案】应助回帖

★ ★ ★
感谢参与,应助指数 +1
fengweiche: 金币+3, 有帮助 2013-11-06 10:05:59
C'-a*C=b*C^n
改写:dC/[a*C+b*C^n]=dt,变形
dC/{C[a+b*C^(n-1)]}=dt
{(1/a)/C -b/a*C^(n-2)/[a+b*C^(n-1)]}*dC=dt
d{lnC/a-1/a*ln[a+b*C^(n-1)/(n-1)]}=dt
lnC-ln{[a+b*C^(n-1)]^[1/(n-1)]}=a*t+K,     K=const.
C/{[a+b*C^(n-1)]^[1/(n-1)]}=exp[a*t+K]=K1*exp(a*t)    K1=const.
3楼2013-11-05 23:37:36
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fengweiche

木虫 (小有名气)

浪子

送红花一朵
引用回帖:
2楼: Originally posted by wurongjun at 2013-11-05 23:32:54
C(t)=exp(-log((-b+exp(-a*t*n+a*t)*d1*a)/a)/(n-1))
其中d1为任意常数!

,有没有具体步骤
心有多远,就能飞多远!
4楼2013-11-06 10:11:28
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见