| 查看: 3844 | 回复: 68 | |||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||||
[交流]
【2013-12-31】Frontiers in Microbiology专刊征稿【SCIE】
|
|||||
DNA Replication Origins in Microbial Genomes 导师主持的专刊,如有合适的工作,欢迎各位投稿。如有兴趣,可站内信联系。 http://www.frontiersin.org/evolu ... origins_in_mic/2193 In collaboration with Frontiers in Microbiology, we are organizing a Research Topic titled "DNA Replication Origins in Microbial Genomes”. Frontiers, a Swiss open-access publisher, recently partnered with Nature Publishing Group to expand its researcher-driven Open Science platform. Frontiers articles are rigorously peer-reviewed, can be disseminated freely and are widely read by your colleagues and by the broader scientific and medical research communities. Research Topic DNA replication, a central event for cell proliferation, is the basis of biological inheritance. Complete and accurate DNA replication is integral to the maintenance of the genetic integrity of organisms. In all three domains of life, DNA replication begins at replication origins. In bacteria, replication initiates from a single replication origin (oriC), which contains several DnaA boxes. In eukaryotic genomes, replication initiates from significantly more replication origins, ranging from hundreds in yeast to tens of thousands in human, activated simultaneously at a specific time. For eukaryotic organisms, replication origins are best characterized in the unicellular eukaryote budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. The budding yeast origins contain an essential sequence element called the ARS (autonomously replicating sequence), while the fission yeast origins consist of AT-rich sequences. Within the archaeal domain, the multiple replication origins have been identified by a predict-and-verify approach in the hyperthermophilic archaeon Sulfolobus. Archaeal origins contain two or more short repetitive DNA sequences, known as origin recognition boxes (ORBs). It appears that archaea have a simplified version of the eukaryotic replication apparatus, which has led to considerable interest in the archaeal machinery as a model of that in eukaryotes. The identification of replication origins is important not only in providing insights into the structure and function of the replication origins but also in understanding the regulatory mechanisms of the initiation step in DNA replication. Therefore, intensive studies have been carried out on the identification of replication origins in the last two decades. The pioneer work to identify bacterial oriCs in silico is the GC-skew analysis. Later, a method of cumulative GC skew without sliding windows was proposed to give better resolution. Meanwhile, an oligomer-skew method was also proposed to predict oriC regions in bacterial genomes. As a unique representation of a DNA sequence, the Z-curve method has been proved to be an accurate and effective approach to predict bacterial and archaeal replication origins. Budding yeast origins have been predicted by Oriscan using similarity to the characterized ones, while the fission yeast origins have been indentified initially from AT content calculation. In comparison with the in silico analysis, the experimental methods are convincing and reliable, but time-consuming and labor-intensive. The microbial replication origins can be identified by several experimental methods including construction of replicative oriC plasmids, microarray-based or high-throughput sequencing-based marker frequency analysis, two-dimensional gel electrophoresis analysis and replication initiation point mapping (RIP mapping) etc. The recent genome-wide approaches to identify and characterize replication origin locations have boosted the number of mapped yeast replication origins. The availability of increasing complete microbial genomes and emerging approaches has created challenges and opportunities for identification of their replication origins in silico, as well as in vivo. This research topic invites for the studies of microbial replication origins, addressing all the issues mentioned above, by in silico analyses as well as in vivo experiments. Manuscripts describing original research, methods, opinions, reviews are all welcome, which would provide a comprehensive overview of this field. [ Last edited by 流风易逝 on 2013-11-4 at 12:03 ] |
» 猜你喜欢
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
真诚求助:手里的省社科项目结项要求主持人一篇中文核心,有什么渠道能发核心吗
已经有6人回复
孩子确诊有中度注意力缺陷
已经有14人回复
三甲基碘化亚砜的氧化反应
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有5人回复
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
» 抢金币啦!回帖就可以得到:
坐标深圳,诚征女友
+1/163
东北大学数字钢铁全国重点实验室刘振宇教授课题组拟招收2026级入学博士研究生1~2名
+2/108
硫化物全固态电池的产业化破局:手套箱如何实现全线稳定制造
+1/85
招收26年资源与环境领域、生物质生物转化、生物技术等方向博士研究生
+1/80
中国科学技术大学 精准智能化学重点实验室 武建昌课题组招聘博士后
+1/80
华东师范大学 程义云 课题组招2026年博士研究生 - 有机化学、材料化学、高分子合成等
+1/79
北京化工大学生命科学与技术学院岗位招聘信息
+1/64
澳门科技大学2026年数学博士招生—杨钧翔助理教授计算物理与数学课题组
+1/47
捷克布拉格查理大学(QS260)招收第一性原理计算博士生
+1/32
澳门科技大学2026年数学博士招生—计算物理与数学课题组:计算流体与相场方法
+1/24
华北电力大学(北京)(第一性原理计算)博士招生——学博,专博各1人
+2/22
招聘2026年入学博士生
+1/17
南京大学能源与资源学院蔡亮课题组诚招2026年申请-考核制博士生2-3名
+1/10
意大利CSC机器人方向博士招生
+1/10
长江大学武汉校区诚招新能源博士(工程热物理、电气、油气)-2025
+1/7
长江大学武汉校区诚招工程热物理、油气、电气等新能源博士-2025
+1/5
山东大学集成电路学院博士招生
+1/5
长江大学武汉校区诚招新能源博士-2025
+1/4
爱尔兰都柏林圣三一大学 招聘全奖博士生/博士后/联培(电池热管理、MPC、机器人方向)
+1/2
上海交通大学AIMS-Lab招收AI for Science方向2026级博士生
+1/1
38楼2013-11-04 13:01:54




回复此楼