24小时热门版块排行榜    

查看: 3231  |  回复: 15

longchenkun

铁杆木虫 (小有名气)

[交流] Handbook of Industrial Catalysts 已有14人参与


Chapter 1
Industrial Catalysts
1.1 Introduction 1
1.2 What is a Catalyst? 5
1.2.1 Activity 6
1.2.2 Selectivity and Yield 7
1.2.3 Stability 7
1.2.4 Strength 8
1.3 Catalyst Production 8
1.3.1 Precipitation
1.3.2 Impregnation 13
1.3.3 Other Production Methods 13
1.4 Catalyst Testing 14
1.4.1 Physical Tests 14
1.4.2 Chemical Composition 14
1.4.3 Activity Testing 15
1.5 Catalyst Operation 18
1.5.1 Reactor Design 18
1.5.2 Catalytic Reactors 18
1.5.3 Catalyst Operating Conditions
1.6 Conclusion 21
References 22

Chapter 2
The First Catalysts
2.1 Sulfuric Acid 23
2.1.1 The Lead Chamber Process 24
2.1.1.1 Chemistry of the Lead Chamber Process 26
2.1.1.2 The Continuing Use of the Lead Chamber Process 27
2.1.1.3 Raw Material for Sulfuric Acid Production 28
2.1.2 Contact Process Development 29
2.1.3 Modern Sulfuric Acid Processes 35
2.1.3.1 Catalyst Preparation 36
2.1.3.2 Sulfuric Acid Plant Design 37
2.1.3.3 Cesium-Promoted Catalysts 38
2.1.3.4 Sulfuric Acid Plant Operation 39
2.1.3.5 Improved Catalyst Shapes 39
2.2 The Deacon Process 39
2.2.1 The Process 40
2.2.2 Operation 40
2.2.3 Catalyst Preparation 41
2.2.4 Development 41
2.3 Claus Sulfur Recovery Process 41
2.3.1 The Claus Process 42
2.3.2 Claus Plant Operation 42
2.3.3 Claus Process Catalysts 45
2.3.4 Catalyst Operation 46
2.4 Ammonia Synthesis 48
2.4.1 Sir William Crookes 49
2.4.2 Development of the Ammonia Synthesis Process 51
2.4.3 Commercial Application of Ammonia Synthesis Catalysts 52
2.4.4 The Haber–Bosch Synthesis Reactor 53
2.4.5 Conclusions 54
2.5 Coal Hydrogenation 55
2.5.1 The Bergius Process 55
2.5.2 Commercial Development by I. G. Farben 56
2.5.3 Cooperation between I. G. Farben and Standard Oil 56
2.5.4 Commercial Developments by ICI 56
2.5.5 International Cooperation 57
2.5.6 Coal Hydrogenation Processes 57
2.5.6.1 The I. G. Farben Process 58
2.5.6.2 The ICI Process 59
2.5.7 Catalysts for Coal Hydrogenation 60
2.5.8 Creosote and Other Feeds 61
2.6 The Fischer-Tropsch Process 63
2.6.1 Postwar Development of the Synthol Process by Sasol 65
2.6.2 The Importance of Gas-to-Liquids as Gasoline Prices Increase 68
References 69

Chapter 3
Hydrogenation Catalysts
3.1 The Development of Hydrogenation Catalysts 73
3.1.1 Sabatier and Senderens 73
3.1.2 The First Industrial Application of Nickel Catalysts 75
3.1.3 Ipatieff and High-Pressure Hydrogenation of Liquids 75
3.1.4 Colloidal Platinum and Palladium Catalysts by Paal 76
3.1.5 Platinum and Palladium Black Catalysts by Willstatter 76
3.1.6 Adams’ Platinum Oxide 78
3.1.7 Raney Nickel Catalysts 78
3.1.8 Nickel Oxide/Kieselguhr Catalysts 80
3.1.9 Nickel Oxide-Alumina Catalysts 83
3.1.10 Copper Chromite Catalysts 85
3.1.11 Copper Oxide/Zinc Oxide Catalysts 86
3.2. Hydrogenation of Fats and Oils 89
3.2.1 Process Development 89
3.2.2 Oil Hydrogenation 90
3.2.3 Fat Hardening Catalysts 91
3.2.4 Catalyst Selectivity 93
3.2.5 Feed Pretreatment 94
3.2.6 Catalyst Operation 94
3.2.7 Catalyst Poisons 96
3.3 Fatty Acid Hydrogenation 96
3.4 The Production of Fatty Alcohols 97
3.4.1 Natural Fatty Alcohols 97
3.4.2 Catalyst Operation 98
3.4.3 Reaction of Fatty Alcohols 98
3.5 Some Industrial Hydrogenation Processes 99
3.5.1 Nitrobenzene Reduction 99
3.5.2 Benzene Hydrogenation 100
3.5.2.1 Removal of Aromatics 101
3.5.3 Hydrogenation of Phenol 101
3.6 Selective Hydrogenation of Acetylenes and Dienes 102
3.6.1 Acetylene Hydrogenation Process Design 104
3.6.2 Early Acetylene Hydrogenation Catalysts 105
3.6.2.1 Sulfided Cobalt Molybdate 105
3.6.2.2 Sulfided Nickel Oxide 105
3.6.2.3 Fused Iron Oxide 106
3.6.2.4 Palladium Catalyst Guard Beds 106
3.6.3 Modern Acetylene Hydrogenation Catalysts 106
3.6.4 Acetylene Hydrogenation Catalyst Preparation 107
3.6.5 Acetylene Hydrogenation Catalyst Operation 107
3.6.5.1 Tail-End Acetylene Hydrogenation 107
3.6.5.2 Tail-End Methyl Acetylene/Propadiene
Hydrogenation 109
3.6.5.3 Front-End Acetylene Hydrogenation 110
3.6.6 Selective Hydrogenation of Pyrolysis Gasoline 112
3.6.6.1 Catalyst Types 113
3.6.6.2 Catalyst Operation 114
References 115

Chapter 4
Oxidation Catalysts
4.1 Nitric Acid 120
4.1.1 The Ammonia Oxidation Process 124
4.1.2 Catalyst Operation 128
4.1.3 Platinum Recovery 130
4.2 Formaldehyde 131
4.2.1 Silver Catalyst Operation 136
4.2.2 Mixed Oxide Catalyst Operation 136
4.3 Andrussov Synthesis of Hydrogen Cyanide 137
4.4 Hopcalite Catalysts For Carbon Monoxide Oxidation 139
4.5 Phthalic Anhydride 140
4.5.1 Naphthalene Oxidation 141
4.5.2 Orthoxylene Oxidation 142
4.6 Maleic Anhydride 144
4.6.1 Benzene Feedstock 144
4.6.2 n-Butene Feedstock 144
4.6.3 n-Butane Feedstock 148
4.6.4 n-Butane Oxidation in a Circulating Fluidized Bed 149
4.7 Ethylene Oxide 150
4.7.1 Catalyst 152
4.7.2 Operation and Reaction Mechanism 153
4.7.3 Applications of Ethylene Oxide 154
4.8 A Redox Oxidation Mechanism: Mars and Van Krevelen 155
4.9 Acrolein and Acrylonitrile 156
4.9.1 Manufacture of Mixed Oxide Catalysts for Acrolein
and Acrylonitrile 157
4.9.2 The Acrylonitrile Process 158
4.9.3 Reaction Mechanism 159
4.9.4 Partial Oxidation of Propane 161
4.9.5 Acrylic Acid 161
4.9.6 Oxidation of Isobutene 162
4.10 Oxidative Dehydrogenation of n-Butenes to Butadiene 162
References 163

Chapter 5
Catalytic Cracking Catalysts
5.1 Introduction 169
5.2 Process Development 170
5.2.1 Fixed Beds 170
5.2.2 Moving and Fluidized Beds 171
5.2.3 Catalyst Regeneration and Carbon Monoxide Combustion 175
5.2.3.1 Catalyst Regeneration 175
5.2.3.2 Carbon Monoxide Combustion Promoter 176
5.2.4 Equilibrium Catalyst 177
5.2.5 Reaction Mechanism of Catalytic Cracking Reactions 178
5.3 Catalyst Development 180
5.3.1 Natural Clay Catalysts 181
5.3.2 Synthetic Silica Alumina Catalysts 182
5.3.3 Preparation of Synthetic Catalysts 182
5.4 Zeolite Catalysts 184
5.4.1 Commercial Zeolites 185
5.4.2 Production of Zeolites 188
5.4.3 Formation of Active Sites by Ion Exchange 189
5.4.4 Use of Zeolites in Catalytic Cracking 190
5.4.5 The Catalyst Matrix 191
5.5 Octane Catalysts (Catalysts to Increase Octane Rating) 192
5.5.1 Hydrothermal Dealumination of Y-Zeolites 193
5.5.2 Chemical Dealumination of Y-Zeolites 195
5.5.3 Increasing Octane Number 196
5.5.4 Shape Selective Cracking 197
5.6 Residue Cracking Catalysts 198
5.6.1 Residual Feeds 198
5.6.2 Residue Catalyst Formulation 199
5.6.3 Coke Formation 199
5.7 Residue Catalyst Additives 201
5.7.1 Nickel Additives 201
5.7.2 Vanadium Additives 202
5.7.3 Sulfur Oxides Transfer Additives 203
5.7.4 Bottoms Cracking Additive 206
5.8 Reformulated Gasoline 206
References 209

Chapter 6
Refinery Catalysts
6.1 The Development of Catalytic Refinery Processes 211
6.2 Polymer Gasoline 213
6.3 Alkylation 217
6.3.1 Liquid Acid Processes 219
6.3.2 The Mechanism of Alkylation with an Acid Catalyst 219
6.3.3 Liquid Acid Operating Conditions 220
6.3.4 Processes Using Solid-State Acid Catalysts 221
6.4 Hydrotreating 221
6.4.1 What Is Hydrotreating? 223
6.4.2 Hydrotreating Processes 223
6.4.2.1 Catalyst Production and Operation 224
6.4.2.2 Catalyst Handling 225
6.4.2.3 Activating the Catalyst 227
6.4.2.4 Catalyst Operation 229
6.4.2.5 Catalyst Regeneration 229
6.5 Hydrocracking 231
6.5.1 Hydrocracking Processes 232
6.5.1.1 Single-Stage Processes 233
6.5.1.2 Two-Stage Processes 234
6.5.1.3 Once-Through Process 234
6.5.2 Hydrocracking Catalysts 235
6.5.2.1 Acid Supports 235
6.5.2.2 Hydrogenation Catalysts 236
6.5.2.3 Catalyst Preparation 236
6.5.2.4 Catalyst Activity 237
6.5.2.5 Catalyst Reactivation 237
6.6 Catalytic Reforming 238
6.6.1 Naphtha Reforming Reactions 240
6.6.1.1 Reformer Operation 240
6.6.1.2 Coke Formation 246
6.6.2 Reforming Catalysts 247
6.6.2.1 Bimetallic Catalysts 248
6.6.2.2 Catalyst Preparation 250
6.6.3 Catalyst Regeneration 251
6.6.3.1 Carbon Burn 252
6.6.3.2 Oxychlorination 252
6.6.3.3 Platinum Re-Dispersal 252
6.6.3.4 Catalyst Reduction 253
6.6.4 Catalyst Life 253
6.7 Octane Boosting 253
6.7.1 Selectoforming 253
6.7.2 M-Forming 254
6.8 Aromatics Production 254
6.8.1 Aromatics Process 254
6.8.2 Cyclar Process 255
6.8.3 M2-Forming Process 255
6.9 Catalytic Dewaxing 255
6.10 Isomerization 256
6.10.1 Isomerization Catalysts 256
6.10.2 Reaction Mechanism 257
References 258

Chapter 7
Petrochemical Catalysts
7.1 The Development of Petrochemicals 261
7.1.1 Isopropyl Alcohol 265
7.1.1.1 Acetone 265
7.1.1.2 Bisphenol-A 266
7.1.1.3 Cumene 266
7.1.2 Vinyl Chloride 267
7.1.2.1 The Oxychlorination Reaction 270
7.1.2.2 Oxychlorination Catalyst 270
7.1.2.3 Catalyst Operation 271
7.2 Synthetic Rubber From Butadiene and Styrene 273
7.2.1 Butadiene from Butane 275
7.2.2 Butadiene from Butenes 275
7.2.2.1 Oxidative Dehydrogenation 277
7.2.3 Propylene from Propane 277
7.2.4 Styrene 278
7.2.4.1 Ethylbenzene Production 279
7.2.4.2 Styrene Production after 1950 281
7.2.4.3 Styrene Plant Operation 282
7.2.4.4 Ethylbenzene Dehydrogenation (Styrene) Catalysts 283
7.3 Synthetic Fibers 283
7.3.1 Nylon 66 284
7.3.1.1 Production of Nylon Intermediates 285
7.3.1.2 Adipic Acid 285
7.3.1.3 Hexamethylenediamine 286
7.3.1.4 Nylon Polymer 288
7.3.2 Nylon 6 289
7.3.2.1 Caprolactam 289
7.3.2.2 Cyclohexanone 290
7.3.2.3 Cyclohexanone Oxime 290
7.3.2.4 Snia-Viscosa Process 291
7.3.2.5 Conversion of Cyclohexanone Oxime to Caprolactam 291
7.3.2.6 Caprolactam from Butadiene 292
7.3.3 Polyesters 292
7.3.3.1 Paraxylene 293
7.3.3.2 Terephthalic Acid 294
7.3.3.3 Alternative Routes for Terephthalic Acid Production 296
7.3.3.4 Use of Polyesters 296
7.4 Hydroformylation and Carbonylation 297
7.4.1 Cobalt Carbonyl Catalysts 297
7.4.2 Phosphine Modified Catalysts 298
7.4.3 Low-Pressure Hydroformylation 300
7.4.4 Commercial Operation 301
7.4.5 Acetic Acid 301
7.4.6 Acetaldehyde 303
7.5 Metathesis of Olefins 304
7.5.1 Process Development 304
7.5.2 The Shell Higher-Olefins Process 305
References 306

Chapter 8
Olefin Polymerization Catalysts
8.1 Low-Pressure Polyethylene 312
8.1.1 Polyethylene Process Development 313
8.1.2 The Development of Polypropylene Catalysts 314
8.2 Ziegler–Natta Catalysts 314
8.2.1 Early Polyolefin Catalysts 314
8.2.2 Ziegler’s Brown Titanium Trichloride 315
8.2.3 Natta’s Violet Titanium Trichloride 316
8.2.4 Second-Generation Propylene Polymerization Catalysts 317
8.2.5 Supported Polyethylene Catalysts 319
8.2.6 Supported Polypropylene Catalysts 320
8.2.6.1 Third-Generation Catalysts 320
8.2.6.2 Fourth-Generation Catalysts 321
8.3 Phillips Polyethylene Catalysts 322
8.3.1 Catalyst Production 323
8.3.2 Catalyst Reduction 324
8.3.4 Catalyst Operation 324
8.3.5 Catalyst Modifiers 325
8.3.5.1 Titanium 326
8.3.5.2 Alumina and Zirconia 327
8.3.5.3 Fluorides 327
8.3.6 Use of Co-catalysts 327
8.3.7 Organo-chromium Catalysts 328
8.4 Other Catalysts 329
8.5 Polymerization Processes 329
8.5.1 Slurry Processes 332
8.5.2 Solution Processes 332
8.5.3 Gas Phase Process 333
8.6 Metallocene/Single-Site Catalysts 334
8.6.1 Early Development 335
8.6.2 Early Development 336
8.6.3 Industrial Operation 338
8.6.4 Catalyst Activators 338
8.6.5 Molecular Weight Control 339
8.6.7 New Catalyst Developments 340
8.7 The Molecular Structure of Polyolefins 341
8.7.1 Formation of Polymer Chains 341
8.7.2 Polymer Chain Termination 342
8.7.3 Molecular Weight 344
References 345

Chapter 9
Synthesis Gas
9.1 Ammonia Synthesis Gas 352
9.1.1 Process Developments 353
9.1.2 Increased Ammonia Production by Steam Reforming 354
9.2 Modern Ammonia Plants 355
9.3 Feedstock Purification 357
9.3.1 Activated Carbon 358
9.3.2 Hydrodesulfurization 358
9.3.3 Chlorine Removal 360
9.3.4 Sulfur Absorption 360
9.3.4.1 Operation with Zinc Oxide 361
9.3.4.2 Preparation of Zinc Oxide 363
9.3.4.3 Desulfurization of Other Gases 363
9.4 Steam Reforming 363
9.4.1 Reformer Design 365
9.4.2 Reforming Catalysts 369
9.4.3 Reformer Operation 371
9.4.4 Secondary Reforming 374
9.5 Carbon Monoxide Removal 375
9.5.1 High Temperature Carbon Monoxide Conversion 376
9.5.2 High Temperature Conversion Catalysts 377
9.5.2.1 Operating Conditions 378
9.5.3 Low Temperature Carbon Monoxide Conversion 379
9.5.3.1 Operation 381
9.5.3.2 Catalyst 384
9.6 Methanation 385
9.6.1 Operation 386
9.6.2 Catalyst 387
9.6.3 Other Methanation Processes 388
9.7 Other Applications of Steam Reforming 389
9.7.1 Methanol Synthesis Gas 389
9.7.2 OXO Synthesis Gas 390
9.7.3 Hydrogen Production 390
9.7.4 Reducing Gas 391
9.7.5 Town Gas Production 391
9.7.6 Substitute Natural Gas 392
9.7.7 Autothermal Reforming 393
References 395

Chapter 10
Ammonia and Methanol Synthesis
10.1 Ammonia Synthesis 397
10.1.1 Process Development from 1920 399
10.1.1.1 Haber-Bosch Process 399
10.1.1.2 Claude Process 400
10.1.1.3 Casale Process 401
10.1.1.4 United States of America 402
10.1.1.5 Mont Cenis/Uhde Process 403
10.1.1.6 United Kingdom 403
10.1.2 Ammonia Synthesis Catalysts 405
10.1.2.1 Catalyst Production 405
10.1.2.2 Pre-reduced Catalysts 407
10.1.2.3 Loading Catalyst to Converter 408
10.1.2.4 Catalyst Discharge from the Converter 409
10.1.3 Catalyst Reduction 409
10.1.3.1 Reduction of Oxidized Catalyst 409
10.1.3.2 Reduction of Pre-reduced Catalyst 410
10.1.3.3 Mechanism of Catalyst Reduction 410
10.1.4 The Ammonia Synthesis Process 412
10.1.4.1 The Ammonia Synthesis Loop 412
10.1.4.2 Converter Design 414
10.1.5 New Catalyst Developments 417
10.1.5.1 Magnetite Catalyst Containing Cobalt 418
10.1.5.2 Ruthenium Catalyst 419
10.1.5.3 Catalyst Preparation 419
10.1.5.4 Full-scale Operation with Ruthenium Catalyst 420
10.2 Methanol Synthesis 421
10.2.1 High-pressure Synthesis 421
10.2.1.1 Zinc Oxide-Chromium Oxide Catalysts 421
10.2.1.2 High-Pressure Operation 423
10.2.2 Low-pressure Synthesis 425
10.2.2.1 Copper Oxide Catalysts 426
10.2.2.2 Copper Catalyst Production 426
10.2.2.3 Precipitates Forming During Production 430
10.2.2.4 Operation with Copper Catalysts 431
10.2.2.5 Reaction Mechanism with Copper Catalysts 432
10.2.2.6 Selectivity 432
10.2.2.7 Low-pressure Methanol Reactor Types 433
10.2.2.8 Catalyst Reduction 433
10.3 Novel Catalysts 434
References 435

Chapter 11
Environmental Catalysts
11.1 Stationary Sources 441
11.1.1 Selective Catalytic Reduction 443
11.1.2 Selective Catalytic Reduction Catalysts 445
11.1.2.1 Catalyst Composition 446
11.1.2.2 Catalyst Operation 447
11.1.2.3 Reaction Mechanism 447
11.1.2.4 Removal of Sulfur Dioxide as Sulfuric Acid 448
11.1.3 Gas Turbine Exhausts 449
11.1.3.1 Low Temperature Vanadium Pentoxide Catalysts 449
11.1.3.2 Catalytic Combustion Processes 449
11.1.4 Nitric Acid Plant Exhaust Gas 450
11.1.5 Ion-exchanged ZSM-5 Zeolites 451
11.2 Mobile Sources 452
11.2.1 Automobile Emission Control 452
11.2.2 Automobile Emission Control Catalysts 455
11.2.2.1 Bead Catalysts 456
11.2.2.2 Monolith Catalysts 456
11.2.2.3 Washcoat Composition 457
11.2.2.4 Platinum Group Metal Catalysts 458
11.2.2.5 Catalyst Poisons 459
11.2.3 Platinum Metal Group Availability 460
11.2.4 Catalyst Operation 460
11.2.5 Nitrogen Oxide Removal in Lean-Burn Engines 463
11.2.6 Diesel Engines 464
11.3 Volatile Organic Compounds 465
11.3.1 VOC Removal Processes
11.3.2 VOC Oxidation Catalysts 468
Reference 469
Index 471
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : Handbook_of_Industrial_Catalysts.pdf
  • 2013-09-21 10:38:06, 36.55 M

» 收录本帖的淘帖专辑推荐

书籍下载网站 专业书籍(外文版)WM 软件学习书籍WM 物理化学材料类书籍
书籍

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   关注TA 给TA发消息 送TA红花 TA的回帖

具茨学人

木虫 (职业作家)


小木虫: 金币+0.5, 给个红包,谢谢回帖
送红花一朵
好资源 谢谢楼主分享
2楼2013-09-21 16:32:11
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
谢谢分享
3楼2013-09-21 20:55:59
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

ljj716

木虫 (著名写手)

Thanks!
很多事情不是看到了希望才去坚持,而是坚持了才会看到希望!
4楼2013-09-22 08:34:27
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

frank8595

木虫 (著名写手)

谢谢!

[ 发自小木虫客户端 ]
5楼2013-09-22 10:15:21
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

258024

金虫 (小有名气)

谢谢!
6楼2013-09-22 21:44:42
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

zxf984

至尊木虫 (文坛精英)

非常感谢!!!!!!!!!!!!!!!!!!1
7楼2013-09-23 06:29:33
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
谢谢分享!!
8楼2013-09-23 08:03:43
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

yy27jyh

金虫 (正式写手)

不错,谢谢~
9楼2013-09-23 08:22:51
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

yongyong2050

至尊木虫 (职业作家)

感谢分享~~~~~
10楼2013-10-11 17:05:09
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 longchenkun 的主题更新
信息提示
请填处理意见