| 查看: 639 | 回复: 2 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
客庐听雨铜虫 (初入文坛)
|
[求助]
求助翻译几段英文
|
||
|
The estimation of the lateral earth pressure development has been one of the most common but important in engineering practice since it governs the design of many geotechnical engineering structures including the retaining wall. Retaining walls with cohesionless backfill soil are typically designed based on the active lateral earth pressure distribution due to the tendency of outward tilt about the base. Classical earth pressure theories, e.g., Coulomb's and Rankine's (1), have been widely used for this purpose and have proven reliable. Since a certain amount of strain must develop within the soil mass in order that the shear stresses that help to support the soil may be fully mobilized, a certain amount of tilt of the wall must be allowed before the lateral earth pressure reduces to the value of active lateral earth pressure (5). In special circumstances where movement is restricted, such as bridge abutments, developed lateral earth pressures, therefore, could be greater than the active lateral earth pressures. This paper describes a method of estimating the magnitude and distribution of the lateral earth pressure exerted by cohesionless soil behind the rigid retaining wall experiencing outward tilt about its base from an“initial active” state to a “full active” state. The initial active state refers to a stage of wall tilt when only the soil element at the ground surface experiences a sufficient lateral movement to achieve an active condition The full active state occurs when the entire soil elements from the ground surface to the base of the wall are in active condition. Between these two extremes,”intermediate active”states exist. The transition of the lateral earth pressures from an initial active to a full active state is discussed and shown. Finally, the developed method of analysis is compared with the model test results. Fig. 1 shows a free body diagram of an active wedge similar to the one considered in Coulomb's theory. The active thrust, Pa, can be obtained from the equilibrium of forces. |
» 猜你喜欢
三无产品还有机会吗
已经有3人回复
投稿返修后收到这样的回复,还有希望吗
已经有7人回复
压汞仪和BET测气凝胶孔隙率
已经有4人回复
博士申请都是内定的吗?
已经有14人回复
谈谈两天一夜的“延安行”
已经有13人回复
氨基封端PDMS和HDI反应快速固化
已经有11人回复
之前让一硕士生水了7个发明专利,现在这7个获批发明专利的维护费可从哪儿支出哈?
已经有11人回复
论文投稿求助
已经有4人回复
Applied Surface Science 这个期刊。有哪位虫友投过的能把word模板发给我参考一下嘛
已经有3人回复
投稿精细化工
已经有6人回复

2楼2013-05-29 16:17:24
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ...
客庐听雨: 金币+60, 翻译EPI+1, ★★★★★最佳答案 2013-05-29 20:48:34
客庐听雨: 金币+60, 翻译EPI+1, ★★★★★最佳答案 2013-05-29 20:48:34
|
对侧压力的发展的估计已成为实践中最普遍却最重要的课题之一。因为它指导着很多岩土工程结构,包括挡土墙的设计。无粘性回填土的挡土墙通常是基于主动土压力分布来设计,侧压力是由地基向外倾斜的趋向性产生。经典的土压力理论,例如,库伦和朗肯的理论(1),基于此目的已经被广泛应用,并证实可靠。 由于土壤体内部必然产生一个特定的张力,以便帮助支持土壤的剪切应力能够被充分调动,在侧压力减少到主动土压力的值之前,必须允许墙面产生特定量的倾斜(5)。在运动受限的特殊情况下,例如桥墩,其所产生的侧压力可能要大于主动土压力。 本文阐述了一种估计侧压力的大小和分布的方法,该压力是由刚性承重墙背后的无粘性土施加的,它同时经历着环绕在地基部位的外部倾斜,这使它由一种“初始主动”状态转变为“完全主动”状态。这种初始主动状态指的是,墙的倾斜状态仅仅达到地表的土壤元素获得充分的横向土压力侧压力并达到滑动条件的情况。而完全主动状态发生时,由地表到地基的整个土壤成分都达到了主动条件。在这两个极端条件之间,“中间主动”状态也是存在的。由初始主动到完全主动状态时,关于侧压力的过渡的讨论如下所示。最终,衍生出的分析方法与模型的测试结果作出比较。 图1显示了一个于库伦理论相似的主动楔的自由体图表。主动推力,Pa,可以由力平衡求出。 |
3楼2013-05-29 20:04:07













回复此楼