24小时热门版块排行榜    

查看: 1570  |  回复: 11
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

gender09

木虫 (小有名气)

[求助] 求助一个矩阵求解问题

问题见附图,小弟不知如何把图显示在此处,请见谅。

在此问题重新描述下:
已知M对角矩阵diag(m_i),L循环矩阵L(i,i)=2,L(i,i+1)=L(i,i-1)=-1,且存在向量X,使得(xM-L)X=0,则如何求其中的x?
敬请各位大侠指点下,多谢各位

未命名.jpg
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

游走于理想现实间,寻求平衡
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

webbery

金虫 (正式写手)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
gender09: 金币+20, 有帮助, 尚未得到我最想要的情况,谢谢 2013-03-13 20:57:24
引用回帖:
5楼: Originally posted by gender09 at 2013-03-05 21:14:09
恩,是的,但我想知道的是这种特殊的情形,能否求出来其值的表达式?...

因为M为非奇异对角阵,其实就类似于求L的特征值。M^-1L是循环矩阵,关于循环矩阵特征值的求法很多,百度一下就出来不少文献了。

未命名1.jpg



未命名2.jpg

6楼2013-03-06 04:27:38
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 12 个回答

sskkyy

银虫 (正式写手)

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
gender09: 金币+10, 有帮助 2013-03-13 20:54:52
Lambda must be the eigenvalues of LM^-1
2楼2013-03-04 23:40:12
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

sskkyy

银虫 (正式写手)

【答案】应助回帖

LM^-1 de te zheng zhi jiu man zu Lambda.
3楼2013-03-04 23:42:20
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

gender09

木虫 (小有名气)

确实是的。但这种特殊的情形,能否求出来其值的表达式?
游走于理想现实间,寻求平衡
4楼2013-03-05 08:41:40
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见