24小时热门版块排行榜    

查看: 315  |  回复: 1

gen007gen

木虫 (正式写手)

[交流] Interesting Open Problems Related to Graphs Thoery 已有1人参与

The following conjecture was proposed by P. Seymour in 1990.

Conjecture: every directed graph $D=(V, A)$ (loopless and without multiple arcs or circuits of length two) contains a vertex $v$ such that $|N^+(v)|\leq |N^{++}(v)|$, where $N^+(v)$ is the set of all out neighbors of $v$ and $N^{++}$ is the set of all second out neighbors of $v$, that is, $N^+(v)=\{u\mid (v,u)\in A\}$ and $N^{++}=\{u\in V\setminus N^+(v)\mid \exists {u'\in N^+(v) [(v,u')\in A, (u', u)\in A]} \}$.

Fisher [1] has proved that the conjecture is true when $D$ is a tournament. However, for $D$ being a general digraph, this conjecture remains open.

[1] D. C. Fisher, Squaring a tournament: a proof of Dean’s conjecture. J. Graph
Theory, 23 (1996), 43–48.
回复此楼

» 猜你喜欢

虫木小
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

1j1j1j1j

新虫 (初入文坛)


小木虫: 金币+0.5, 给个红包,谢谢回帖
Interesting Open Problems Related to Graphs Thoery
以图形理论相关的有趣的开放问题

The following conjecture was proposed by P. Seymour in 1990.
以下猜想是由P.西摩1990了。

Conjecture: every directed graph $D=(V, A)$ (loopless and without multiple arcs or circuits of length two) contains a vertex $v$ such that $|N^+(v)|\leq |N^{++}(v)|$, where $N^+(v)$ is the set of all out neighbors of $v$ and $N^{++}$ is the set of all second out neighbors of $v$, that is, $N^+(v)=\{u\mid (v,u)\in A\}$ and $N^{++}=\{u\in V\setminus N^+(v)\mid \exists {u'\in N^+(v) [(v,u')\in A, (u', u)\in A]} \}$.
猜想:每一个有向图$ d =(V,A)$(无环和不多的弧或电路的长度)包含一个顶点v,|美元美元美元^ + n(V)| \ LEQ | N ^ { + }(V)|美元,其中$ n ^ +(V)是集所有邻居的$ V $和$ N ^ { + } $是集所有第二邻居五美元,美元,美元,N ^ +(V)= \ {U \中期(v,u)\ \ } $和$ N ^ { + } = \ { u在V型setminus N ^ +(V)\中\存在{ U \ n ^ +(V)[(v,u)在一,(u,u)在一] } } $ \。

Fisher [1] has proved that the conjecture is true when $D$ is a tournament. However, for $D$ being a general digraph, this conjecture remains open.
费舍尔[ 1 ]证明猜想为真时$ D $是一个比赛。然而,为$ D $作为一种通用的有向图,这个猜想仍然是开放的。

[1] D. C. Fisher, Squaring a tournament: a proof of Dean’s conjecture. J. Graph
【1】D. C. Fisher,蕾比赛:Dean猜想的证明。J.图

Theory, 23 (1996), 43–48.
理论上,23(1996),43–48。
这个是翻译,供参考
不一定100%准确,见谅
2楼2013-03-04 19:06:42
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 gen007gen 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见