| 查看: 1730 | 回复: 6 | ||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||||
[交流]
法国-奥尔良-博后-太阳能电池已有2人参与
|
||||
|
Post doctoral position: Efficiency Improvement of Amorphous Silicon Solar Cells Subject Today, most solar cells are commercially produced using monocrystalline or polycrystalline silicon. These solar cells can achieve photovoltaic efficiencies of about 25%. But solar cells, including silicon thin hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H), are of increasing interest from an industrial point of view. The layers are very thin and allow low material consumption (~ 1 micron) against hundreds of microns for the solar cells based on single or polycrystalline silicon. Since solar cells are very thin, they can be deposited on flexible substrates, such as metal films or sheets of plastic. Silicon can be deposited in thin layers with low production costs by radio frequency plasma (13.56), in which the silane (SiH4) precursor gas is decomposed. As a result, hydrogenated amorphous silicon a-Si:-H from the decomposition of silane, is obtained. A drawback related to the a-Si:H technology is the relatively low photovoltaic efficiency. Project Description To improve this efficiency it is necessary to increase the amount of light absorbed in the range of wavelengths by optimizing absorption, scattering and luminescence (optical trapping) within the cell . The project ARPPCM (Efficiency Improvement of thin-film photovoltaic panels) carried by the CEMHTI (Orléans) and supported by the cluster MAPROPEE, and the S2E2 consortium, combines the GREMI (Orléans), the CRMD(Orléans), the GREMAN (Tours) MID (Dreux) and Solsia (Palaiseau) factories . It aims to introduce within the cell noble metallic nano particles (Plasmonics Engineering) to increase the absorption in the active material and then cell efficiency. The project proposes a study from the implementation of such cells by different deposition techniques and laser engraving, till modeling, test, and industrialization. Two ways can thus be envisaged, either by the use of the localized plasmon resonance surface (LSPR) in metal particles, or by the use of surface plasmon waves also referred to as "surface plasmon polariton" on a metal surface . The first approach is based on: i) the increase of the electromagnetic field in the vicinity of the metallic particles of small size (<50 nm) when irradiated with sunlight having of a wavelength close to the resonance excitation wavelength (around 550nm for gold and 400nm or silver) or -ii) by diffusion of the light from metal particles of bigger size. In the second approach the wave (plasmon) created at the interface of a metal and a dielectric should allow a better absorption in the photovoltaic material. Our project is to assess the  potential of these metal structures on the front or rear face of the photovoltaic cell. Several deposition techniques and laser engraving will be implemented by the CEMHTI the CRMD the GREMI and MID to define the most suitable for industrial use and a good knowledge of morphological and structural characteristics. Determining the efficiency will be performed by Greman and validated on a larger scale by the company Solsia (GREMAN will be in charge of determining cell efficiency while SOLSIA company will validate them at industrial level). Our ultimate goal is to determine the optimal parameters for the fabrication of a prototype cell based on single junction and tandem junction combining amorphous silicon and micro crystalline. The postdoc might be able to perform the various deposition techniques as well as sample and cell characterization. Research Fields The Ph.D candidate will have hands-on experience in materials science related to deposition and laser methods for nano material elaboration and on characterisation methods as SEM Microscopy, XRay Diffraction, Photo Luminescence, UV-Visible spectrophotometry . Knowledge of photovoltaic cells and diffusion models are strong assets. web site http://www.cemhti.cnrs-orleans.fr/ Institute CEMHTI Orleans France Application details Envisaged Job Starting Date 31/12/2012 Envisaged Job Finishing Date 31/12/2014 How To Apply Jean philippe blondeau: jean-philippe.blondeau@cnrs-orleans.fr Esidor ntsoenzok : esidor@cnrs-orleans.fr Taia kronborg : anim.mapropee@gmail.com |
» 收录本帖的淘帖专辑推荐
工作 |
» 猜你喜欢
谈谈两天一夜的“延安行”
已经有15人回复
EST投稿状态问题
已经有6人回复
职称评审没过,求安慰
已经有15人回复
垃圾破二本职称评审标准
已经有11人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有16人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
聘U V热熔胶研究人员
已经有10人回复
求助文献
已经有3人回复
投稿返修后收到这样的回复,还有希望吗
已经有8人回复
三无产品还有机会吗
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
北京大学化学院黄春辉院士课题组招聘博士后和科研助手(太阳能电池和OLED方向)
已经有3人回复
【讨论】做太阳能电池的好申请吗?
已经有10人回复
tt.yao
荣誉版主 (知名作家)
爱思考的小强
- 应助: 189 (高中生)
- 贵宾: 20.732
- 金币: 31443.3
- 散金: 13793
- 红花: 130
- 沙发: 21
- 帖子: 6332
- 在线: 1052.3小时
- 虫号: 606992
- 注册: 2008-09-19
- 专业: 凝聚态物性 II :电子结构
- 管辖: 微米和纳米
★
小木虫: 金币+0.5, 给个红包,谢谢回帖
小木虫: 金币+0.5, 给个红包,谢谢回帖
tt.yao
荣誉版主 (知名作家)
爱思考的小强
- 应助: 189 (高中生)
- 贵宾: 20.732
- 金币: 31443.3
- 散金: 13793
- 红花: 130
- 沙发: 21
- 帖子: 6332
- 在线: 1052.3小时
- 虫号: 606992
- 注册: 2008-09-19
- 专业: 凝聚态物性 II :电子结构
- 管辖: 微米和纳米













回复此楼