| 查看: 2468 | 回复: 51 | |||||||
| 【奖励】 本帖被评价47次,作者CHFCFC增加金币 37.4 个 | |||||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||||||
[资源]
High Power Laser–Matter Interaction (springer 2010)
|
|||||||
|
1 Introductory Remarks and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 The Laser Plasma: Basic Phenomena and Laws . . . . . . . . . . . . . . . . . . . . 5 2.1 Laser–Particle Interaction and Plasma Formation. . . . . . . . . . . . . . . . . 6 2.1.1 High-Power Laser Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Single Free Electron in the Laser Field (Nonrelativistic) . . 9 2.1.3 Collisional Ionization, Plasma Heating, and Quasineutrality 13 2.2 Fluid Description of a Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Two-Fluid and One-Fluid Models . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Linearized Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.3 Similarity Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3 Laser Plasma Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3.1 Plasma Production with Intense Short Pulses . . . . . . . . . . . 60 2.3.2 Heating with Long Pulses of Constant Intensity . . . . . . . . . 63 2.3.3 Similarity Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.4 Steady State Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.4.1 The Critical Mach Number in a Stationary Planar Flow. . . 75 2.4.2 Ablative Laser Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.4.3 Ablation Pressure in the Absence of Profile Steepening . . . 82 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3 Laser Light Propagation and Collisional Absorption . . . . . . . . . . . . . . . 91 3.1 The Optical Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.1.1 Ray Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.1.2 WKB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.1.3 Energy Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.2 Stokes Equation and its Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.2.1 Homogeneous Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . 107 3.2.2 Reflection-Free Density Profiles . . . . . . . . . . . . . . . . . . . . . . 112 3.2.3 Collisional Absorption in Special Density Profiles . . . . . . . 113 3.2.4 Inhomogeneous Stokes Equation . . . . . . . . . . . . . . . . . . . . . 115 3.3 Collisional Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.3.1 Collision Frequency of Electrons Drifting at Constant Speed (Oscillator Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.3.2 Thermal Electrons in a Strong Laser Field. . . . . . . . . . . . . . 129 3.3.3 The Ballistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 3.3.4 Equivalence of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3.3.5 Complementary Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 3.4 Inverse Bremsstrahlung Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 3.5 Ion Beam Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4 Resonance Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.1 Linear Resonance Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.1.1 The Capacitor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.1.2 Steep Density Gradients and Fresnel Formula . . . . . . . . . . . 160 4.1.3 Comparison with Experiments . . . . . . . . . . . . . . . . . . . . . . . 163 4.2 Nonlinear Resonance Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4.2.1 High Amplitude Electron Plasma Waves at Moderate Density Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2.2 Resonance Absorption by Nonlinear Electron Plasma Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.3 Hot Electron Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.3.1 Acceleration of Electrons by an Intense Smooth Langmuir Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.3.2 Particle Acceleration by a Discontinuous Langmuir Wave . 178 4.3.3 Vlasov Simulations and Experiments . . . . . . . . . . . . . . . . . . 179 4.4 Wavebreaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.4.1 Hydrodynamic Wavebreaking . . . . . . . . . . . . . . . . . . . . . . . . 184 4.4.2 Kinetic Theory of Wavebreaking . . . . . . . . . . . . . . . . . . . . . 186 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5 The Ponderomotive Force and Nonresonant Effects . . . . . . . . . . . . . . . . 193 5.1 Ponderomotive Force on a Single Particle . . . . . . . . . . . . . . . . . . . . . . . 194 5.1.1 Conservation of the Cycle-Averaged Energy . . . . . . . . . . . . 195 5.1.2 The Standard Perturbative Derivation of the Force . . . . . . . 199 5.1.3 Rigorous Relativistic Treatment . . . . . . . . . . . . . . . . . . . . . . 201 5.2 Collective Ponderomotive Force Density . . . . . . . . . . . . . . . . . . . . . . . . 206 5.2.1 Bulk Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 5.2.2 The Force Originating from Induced Fluctuations . . . . . . . 206 5.2.3 Global Momentum Conservation . . . . . . . . . . . . . . . . . . . . . 209 5.3 Nonresonant Ponderomotive Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 5.3.1 Ablation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 5.3.2 Filamentation and Self-Focusing . . . . . . . . . . . . . . . . . . . . . . 219 5.3.3 Modulational Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6 Resonant Ponderomotive Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.1.1 Waves, Energy Densities and Wave Pressure . . . . . . . . . . . . 230 6.1.2 Doppler Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 6.2 Instabilities Driven by Wave Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 238 6.2.1 Resonant Ponderomotive Coupling . . . . . . . . . . . . . . . . . . . . 238 6.2.2 Unstable Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 6.2.3 Growth Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 6.3 Parametric Amplification of Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 6.3.1 Slowly Varying Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 257 6.3.2 Quasi-Particle Conservation and Manley朢owe Relations 258 6.3.3 Light Scattering at Relativistic Intensities . . . . . . . . . . . . . . 259 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 7 Intense Laser朅tom Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 7.1 Atomic Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 7.2 Atoms in Strong Static Electric Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 270 7.2.1 Separation of the Schr鰀inger Equation . . . . . . . . . . . . . . . . 272 7.2.2 Tunneling Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 7.3 Atoms in Strong Laser Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 7.3.1 Floquet Theory and Dressed States . . . . . . . . . . . . . . . . . . . . 283 7.3.2 Non-Hermitian Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . 287 7.3.3 Stabilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 7.3.4 Strong Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 292 7.3.5 Few-Cycle Above-Threshold Ionization. . . . . . . . . . . . . . . . 301 7.3.6 Simple Man抯 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 7.3.7 Interference Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 7.3.8 High-Order Harmonic Generation . . . . . . . . . . . . . . . . . . . . 308 7.3.9 Strong Field Approximation for High-Order Harmonic Generation: the Lewenstein Model . . . . . . . . . . . . . . . . . . . 313 7.3.10 Harmonic Generation Selection Rules . . . . . . . . . . . . . . . . . 315 7.4 Strong Laser朅tom Interaction Beyond the Single Active Electron . . 319 7.4.1 Nonsequential Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 8 Relativistic Laser朠lasma Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 8.1 Essential Relativity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 8.1.1 Four Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 8.1.2 Momentum and Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . 336 8.1.3 Scalars, Contravariant and Covariant Quantities . . . . . . . . . 337 8.1.4 Ideal Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 8.1.5 Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 8.1.6 Center of Momentum and Mass Frame of Noninteracting Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 8.1.7 Moment Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 8.1.8 Covariant Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 348 8.2 Particle Acceleration in an Intense Laser Field . . . . . . . . . . . . . . . . . . . 351 8.2.1 Particle Acceleration in Vacuum . . . . . . . . . . . . . . . . . . . . . . 353 8.2.2 Wakefield and Bubble Acceleration . . . . . . . . . . . . . . . . . . . 359 8.3 Collisionless Absorption in Overdense Matter and Clusters . . . . . . . . 363 8.3.1 Computer Simulations of Collisionless Laser–Target Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 8.3.2 Search for Collisionless Absorption . . . . . . . . . . . . . . . . . . . 371 8.3.3 Collisionless Absorption by Anharmonic Resonance . . . . . 378 8.4 Some Relativity of Relevance in Practice . . . . . . . . . . . . . . . . . . . . . . . 392 8.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 8.4.2 Critical Density Increase for Fast Ignition . . . . . . . . . . . . . . 393 8.4.3 Relativistic Self-Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : HighPowerLaser-MatterInteraction-P.Mulser,D.Bauer(Springer,2010)BBS.pdf
2012-09-22 23:23:03, 11.02 M
» 收录本帖的淘帖专辑推荐
书籍下载网站 | 专业书籍(外文版)WM | 国外专业电子书1 | 英文文献或者教材 |
Optical |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
东北大学新能源转换与存储团队诚招2026级化学、化工、材料与冶金方向博士
已经有4人回复
急急急,请教各位材料前辈,纳米笼的官方定义,尺寸是不是<10nm?
已经有5人回复
冶金与矿业论文润色/翻译怎么收费?
已经有73人回复
求各位推荐几家靠谱的能够用BI-200SM仪器测试DLS的高校或者机构
已经有2人回复
模拟工业电积锌遇到问题
已经有2人回复
北京市自然科学基金面上项目成员组成请教
已经有1人回复
求助《中国高等教育》期刊投稿方法
已经有4人回复
E51+金属镓固化后有很多气泡怎么搞
已经有2人回复
请问癸二酸可以和碳酸二苯酯发生酯交换反应吗,条件是什么?感谢!
已经有8人回复
» 本主题相关价值贴推荐,对您同样有帮助:
【其他】征集第一性原理计算方面牛人的主页【活动结束】
已经有80人回复
16楼2013-11-07 16:58:26
简单回复
lwg33楼
2012-09-23 18:57
回复
五星好评 顶一下,感谢分享!
2012-09-25 00:20
回复
五星好评 顶一下,感谢分享!
2012-09-26 05:54
回复
五星好评 顶一下,感谢分享!
4110wu6楼
2012-11-26 22:54
回复
五星好评 顶一下,感谢分享!
2013-01-15 16:52
回复
五星好评 顶一下,感谢分享!
愤怒的蚂蚁8楼
2013-01-17 17:39
回复
五星好评 顶一下,感谢分享!
东西木9楼
2013-01-24 22:44
回复
五星好评 顶一下,感谢分享!
门外青山10楼
2013-03-17 08:19
回复
五星好评 顶一下,感谢分享!
sxf201211楼
2013-05-01 16:11
回复
五星好评 顶一下,感谢分享!
ronghua9512楼
2013-06-20 18:06
回复
五星好评 顶一下,感谢分享!
lit070213楼
2013-06-20 20:57
回复
五星好评 顶一下,感谢分享!
山间一寺14楼
2013-10-13 16:51
回复
五星好评 顶一下,感谢分享!













回复此楼
huanghuahit