| 查看: 16807 | 回复: 454 | ||||||||||||||||||||
| 【奖励】 本帖被评价254次,作者tttl060增加金币 200.6 个 | ||||||||||||||||||||
[资源]
再来一本经典书籍----Strengthening mechanisms in crystal plasticity
|
||||||||||||||||||||
|
这本书值得一看,理论概括的较全面,希望对下载的朋友有所帮助! Synopsis The strengthening of metals by a variety of means has been of interest over much of history. However, the elucidation of the actual mechanisms involved in the processes of alloying and work hardening, and the related processes of metals as a scientific pursuit, has become possible only through the parallel developments in dislocation theory and in definitive experimental tools of electron microscopy and X-ray diffraction. The important developments over the past several decades in the mechanistic understanding of the often complex processes of interaction of dislocations with each other, with solute atoms and with precipitates during plastic flow have largely remained scattered in the professional literature. This has made it difficult for students and professionals to have ready access to this subject as a whole. While there are some excellent reviews of certain aspects of the subject, there is presently no single comprehensive coverage available of the central mechanisms and their modelling. The present book on Strengthening Mechanisms in Crystal Plasticity provides such a coverage in a generally transparent and readily understandable form. It is intended as an advanced text for graduate students in materials science and mechanical engineering. The central processes of strengthening that are presented are modeled by dislocation mechanics in detail and the results are compared extensively with the best available experimental information. The form of the coverage is intended to inspire students or professional practitioners in the field to develop their own models of similar or related phenomena and, finally, engage in more advanced computational simulations, guided by the book. Biography Ali S. Argon Quentin Berg Professor, Emeritus Department of Mechanical Engineering Massachusetts Institute of Technology (Cambridge, Massachusetts) Degrees: B.S., Mechanical Engineering, Purdue University, (1952); S.M., Mechanical Engineering, Massachusetts Institute of Technology, (1953); Sc.D., Massachusetts Institute of Technology, (1956). Honors: Charles Russ Richards Award of the ASME (American Society of Mechanical Engineers) (1976); Fellow of the American Physical Society (1987); Member of the National Academy of Engineering (1989); Nadai Medal of the ASME (1998); Staudinger Duerer Medal of the ETH (Eidgenoessische Technische Hochschule) of Zurich, Switzerland (1999); Heyn Medal of the DGM (Deutche Gesellschaft fur Materialkunde), (2004); D.Eng., (h.c); Purdue University, (2005). Editorial Reviews - Strengthening Mechanisms in Crystal Plasticity Features -Strengthening Mechanisms in Crystal Plasticity Table of Contents Table of Contents List of Symbols xv Structure of Crystalline Solids and the "Defect State" 1 Overview 1 Principal Crystal Structures of Interest 2 Small-Strain Elasticity in Crystals 4 Hooke's Law 4 Orthorhombic Crystals 9 Hexagonal Crystals 9 Cubic Crystals 10 Isotropic Materials 10 Temperature and Strain Dependence of Elastic Response 11 Inelastic Deformation and the Role of Crystal Defects 13 Vacancies and Interstitials 14 Line Properties of Dislocations 17 Topology and Stress Fields of Dislocations 17 Line Energies of Dislocations 20 Planar Faults 22 References 25 Dislocation Stress Fields in a Finite Cylinder 26 Kinematics and Kinetics of Crystal Plasticity 27 Overview 27 Kinematics of Inelastic Deformation 27 Plasticity Resulting from Shear Transformations 27 Plasticity Resulting from Dislocation Glide 29 Lattice Rotations Accompanying Slip 31 Flexure and Motion of Dislocations under Stress 33 Interaction of a Dislocation Line with an External Stress 33 Interaction Energies of Dislocations with Stresses External to Them 35 Interaction of a Dislocation with Free Surfaces and Inhomogeneities 36 Line Tension of a Dislocation 37 Uniformly Moving Dislocations and The Dislocation Mass 39 The Basic Differential Equation for a Moving Dislocation Line 40 The Multiplication of Dislocation Line Length 41 The Mechanical Threshold of Deformation 44 Elements of Thermally Activated Deformation 45 General Principles 45 Principal Activation Parameters for Crystal Plasticity 49 Selection of Slip Systems in Specific Crystal Structures 52 Dislocations in Close-packed Structures 54 Dissociation of Perfect Dislocations in FCC 54 The Thompson Tetrahedron and Other Partial Dislocations 57 The Burgers Vector/Material Displacement Rule 59 Dislocation Reactions and Sessile Locks 60 Plastic Deformation by Shear Transformations 62 Types of Transformation 62 Deformation Twinning 62 Stress-induced Martensitic Transformations 64 Kinking 66 References 68 Overview of Strengthening Mechanisms 70 Introduction 70 The Continuum Plasticity Approach to Strengthening Compared with the Dislocation Mechanics Approach 70 The Lattice Resistance 73 Solid-solution Strengthening 73 Precipitation Strengthening 74 Strengthening by Strain Hardening 76 Phenomena Associated with Strengthening mechanisms 77 References 77 The Lattice Resistance 78 Overview 78 Model of a Dislocation in a Discrete Lattice 78 The Peierls-Nabarro Model of an Edge Dislocation-Updated 78 The Stress to Move the Dislocation 81 Inception of Plastic Deformation 85 HCP and FCC Metals 85 BCC Metals 87 Structure of the Cores of Screw Dislocations in BCC Metals 89 Temperature and Strain Rate Dependence of the Lattice Resistance in BCC Metals 94 The Nature of Thermal Assistance over a Lattice Energy Barrier 94 Lattice Potentials 98 Shapes and Energies of Geometrical Kinks 99 Double-kink Energy in Regime I 101 Double-kink Energy in Regime II 102 The Plastic Strain Rate in BCC Metals 104 The Preexponential Factor and the Net Shear Rate 104 Temperature and Strain Rate Dependence of the Plastic Resistance 106 Comparison of Theory with Experiments on BCC Transition Metals 108 The Lattice Resistance of Silicon 114 Dislocations in Silicon 114 Dislocation Mobility in Silicon 118 Models of the Dislocation Core Structure in Silicon 119 Model of Dislocation Motion 123 Comparison of Models with Experiments 128 The Phonon Drag 132 References 133 Solid-solution Strengthening 136 Overview 136 Forms of Interaction of Solute Atoms with Dislocations in FCC Metals 136 Overview 136 The Size Misfit Interaction 137 The Modulus Misfit Interaction 139 Combined Size and Modulus Misfit Interactions 141 Forms of Sampling of the Solute Field by a Dislocation in an FCC Metal 145 The Solid-solution Resistance of FCC Alloys 149 The Athermal Resistance 149 Thermally Assisted Advance of a Dislocation in a Field of Solute Atoms in an FCC Metal 151 Comparison of Solid-solution-strengthening Models for FCC Metals with Experiments 153 Overview of Experimental Information 153 Peak Solute Interaction Forces 155 Dependence of Flow Stress on Solute Concentration 156 Comparison of Temperature Dependence of CRSS between Experiments and Theoretical Models 157 Summary of Solid-solution Strengthening of FCC Alloys 159 The "Stress Equivalence" of the Solid-solution Resistance of FCC Alloys 159 The Plateau Resistance 163 Solid-solution Strengthening of BCC Metals by Substitutional Solute Atoms 163 Overview of Phenomena 163 Experimental Manifestations of BCC Solid-solution Alloy Systems 165 Interactions of Solute Atoms with Screw Dislocations in BCC Metals 166 Overview of Model of Interaction of Solute Atoms with Screw Dislocation Cores 166 Interaction of Solute Atoms with Screw Dislocation Cores 168 Binding Potential of Solutes to Screw Dislocation Cores 170 The Shear Resistance 172 The Athermal Resistance at the Plateau 172 Resistance Governed by Kink Mobility 173 Double-kink-nucleation-controlled Resistance 177 Combination of Resistances 180 The Strain Rate Dependence of the Flow Stress in the Plateau Range 181 Comparison of Model Results with Experiments 184 The Athermal Resistance at the Plateau 184 Kink-mobility-controlled Plastic Resistance 185 Double-kink-nucleation-controlled Resistance 187 Strain Rate Dependence of the Flow Stress in the Plateau Region, and Activation Volumes 189 References 191 Precipitation Strengthening 193 Overview 193 Formation of Second Phases in the Form of Precipitate Particles, Heterogeneous Domains, or other Lattice Defect Clusters 194 Discrete Precipitates 194 Spinodal-decomposition Domains 198 Defect Clusters and Nanovoids 199 Sampling of Precipitates by Dislocations 200 Precipitate Shapes and Sizes 200 Two Forms of Interaction of Precipitates with Dislocations 201 Statistics of Sampling Random Point Obstacles in a Plane 202 Sampling Point Obstacles of Different Kinds 207 Sampling Obstacles of Finite Width 208 Precipitate Growth, Peak Aging, and Overaging 212 Thermally Assisted Motion of Dislocations through a Field of Penetrable Obstacles 213 Specific Mechanisms of Precipitation Strengthening 219 Overview 219 Chemical Strengthening, or Resistance to Interface Step Production in Shearing 220 Stacking-fault Strengthening 223 Atomic-order Strengthening 235 Size Misfit Strengthening (Coherency Strengthening) 247 Modulus Misfit Strengthening 256 The Orowan Resistance and Dispersion Strengthening 264 Strengthening by Spinodal-decomposition Microstructures 267 Precipitate-like Obstacles 271 References 279 Strain Hardening 283 Overview 283 Features of Deformation 284 Active Slip Systems in FCC Metals 284 Stress-Strain Curves 286 Slip Distributions 292 Dislocation Microstructures 294 Strain-hardening Models 306 Overview 306 Dislocation Intersections 307 Stage I Strain Hardening 312 Stage II Strain Hardening 317 Ingredients of Stage III Hardening 320 Components of Strain Hardening in Stage III 325 Recovery Processes in Stage III 330 Total Strain-hardening Rate in Stage III 334 Strain Hardening in Stage IV 336 Stage V Deformation with No Strain Hardening 340 Strain Hardening in Other Crystal Structures 340 References 340 Deformation Instabilities, Polycrystals, Flow in Metals with Nanostructure, Superposition of Strengthening Mechanisms, and Transition to Continuum Plasticity 344 Overview 344 Yield Phenomena 345 Balance between the Interplane and the Intraplane Resistances and the Mobile Dislocation Density 349 The Portevin-Le Chatelier Effect and Jerky Flow 351 Dynamic Overshoot at Low Temperatures 355 Plastic Deformation in Polycrystals 358 Plastic Resistance of Polycrystals 358 Evolution of Deformation Textures 360 Plastic Deformation in the Presence of Heterogeneities 364 Geometrically Necessary Dislocations 364 Rise in Flow Stress and Enhanced Strain-hardening-rate Effects of Geometrically Necessary Dislocations 364 Grain Boundary Strengthening 370 Plasticity in Metals with Nanoscale Microstructure 376 Superposition of Deformation Resistances 382 The Bauschinger Effect 386 Phenomenological Continuum Plasticity 388 Conditions of Plastic Flow in the Mathematical Theory of Plasticity 388 Transition from Dislocation Mechanics to Continuum Mechanics 389 References 391 Author Index 394 Subject Index 399 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Strengtheningmechanismsincrystalplasticity.pdf
2012-07-03 16:45:59, 4.97 M
» 收录本帖的淘帖专辑推荐
书籍下载网站 | 材料学科书籍收藏 | 国外专业电子书1 | 好书!好读! |
Allen的英文原版+百科 | 英文文献或者教材 | 材料类精品资源 | 百宝箱收集 |
Allen的材料学 | 非晶与材料 | 磁约束聚变材料相关 | 分子动力学 |
材料 | 重要资料 | 科研天地 | 典藏资料 |
有用 | 资源信息 |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
孩子确诊有中度注意力缺陷
已经有9人回复
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
2026博士申请-功能高分子,水凝胶方向
已经有6人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
请问2026国家基金面上项目会启动申2停1吗
已经有5人回复
同一篇文章,用不同账号投稿对编辑决定是否送审有没有影响?
已经有3人回复
» 本主题相关价值贴推荐,对您同样有帮助:
大家有什么关于陶瓷材料基础方面的书籍推荐一下吗
已经有9人回复
哪位虫友能提供一些经典复合材料的书籍,我想利用假期看看。
已经有9人回复
【求助】求量子信息的经典教材
已经有4人回复
如何从海量文献中选取少量经典文献阅读并能写出漂亮综述
已经有64人回复
11楼2012-07-04 08:41:39
114楼2013-03-14 22:10:34
15楼2012-07-04 09:19:17
39楼2012-07-05 19:59:35
44楼2012-07-06 09:09:32
简单回复
毛猴2楼
2012-07-03 18:56
回复
五星好评 顶一下,感谢分享!
imrsfb3楼
2012-07-03 19:36
回复
五星好评
毛猴4楼
2012-07-03 19:47
回复
顶一下,感谢分享!
2012-07-03 20:20
回复
五星好评 顶一下,感谢分享!
2012-07-03 20:59
回复
五星好评 顶一下,感谢分享!
broogood7楼
2012-07-03 22:40
回复
五星好评 顶一下,感谢分享!
2012-07-03 23:38
回复
五星好评 顶一下,感谢分享!
在路上9楼
2012-07-04 00:35
回复
五星好评 顶一下,感谢分享!
jerry201110楼
2012-07-04 08:17
回复
五星好评 顶一下,感谢分享!
linzi61312楼
2012-07-04 08:54
回复
五星好评 顶一下,感谢分享!
xsf00713楼
2012-07-04 08:56
回复
三星好评 顶一下,感谢分享!
溪云初起14楼
2012-07-04 08:59
回复
三星好评 顶一下,感谢分享!
yyy41816楼
2012-07-04 09:35
回复
五星好评 顶一下,感谢分享!
2012-07-04 10:12
回复
五星好评 顶一下,感谢分享!
huntlu0218楼
2012-07-04 10:48
回复
五星好评 顶一下,感谢分享!
tangcp19楼
2012-07-04 10:55
回复
五星好评 顶一下,感谢分享!
suotao_npu20楼
2012-07-04 11:04
回复
三星好评 顶一下,感谢分享!
xuyulai21楼
2012-07-04 11:30
回复
五星好评 顶一下,感谢分享!
sdueming22楼
2012-07-04 11:39
回复
五星好评 顶一下,感谢分享!
nql537941523楼
2012-07-04 14:02
回复
五星好评 顶一下,感谢分享!
jackiejia24楼
2012-07-04 14:08
回复
五星好评 顶一下,感谢分享!
vaughn25楼
2012-07-04 14:32
回复
三星好评 顶一下,感谢分享!
david201726楼
2012-07-04 15:59
回复
五星好评 顶一下,感谢分享!
307033102527楼
2012-07-04 16:47
回复
五星好评 顶一下,感谢分享!
clonelove28楼
2012-07-04 17:50
回复
五星好评 顶一下,感谢分享!
wchj68929楼
2012-07-04 18:21
回复
五星好评 顶一下,感谢分享
steelflower30楼
2012-07-04 19:43
回复
五星好评 顶一下,感谢分享!
yingsly31楼
2012-07-04 20:51
回复
五星好评 顶一下,感谢分享!
2012-07-04 21:08
回复
五星好评 顶一下,感谢分享!
Minicheung33楼
2012-07-04 21:29
回复
五星好评 顶一下,感谢分享!
ly0077134楼
2012-07-04 22:04
回复
五星好评 顶一下,感谢分享!
jishuai35楼
2012-07-05 07:49
回复
五星好评 顶一下,感谢分享!
fanfanfanfan36楼
2012-07-05 08:05
回复
五星好评 顶一下,感谢分享!
eagle308637楼
2012-07-05 09:20
回复
五星好评 顶一下,感谢分享!
hwdd200938楼
2012-07-05 13:29
回复
五星好评 顶一下,感谢分享!
cxncjx40楼
2012-07-05 20:19
回复
五星好评 顶一下,感谢分享!
fydongimr41楼
2012-07-05 20:56
回复
五星好评 顶一下,感谢分享!
mokun42楼
2012-07-06 08:06
回复
五星好评 顶一下,感谢分享!
ztcckaixin43楼
2012-07-06 08:51
回复
五星好评 顶一下,感谢分享!
刘沈阳12345楼
2012-07-06 09:55
回复
五星好评 顶一下,感谢分享!
578946楼
2012-07-06 14:38
回复
三星好评 顶一下,感谢分享!
qwe_jr47楼
2012-07-06 15:52
回复
五星好评 顶一下,感谢分享!
pys110648楼
2012-07-06 17:34
回复
五星好评 顶一下,感谢分享!
warmhouse49楼
2012-07-07 14:11
回复
五星好评 顶一下,感谢分享!
Tony060550楼
2012-07-07 14:34
回复
五星好评 顶一下,感谢分享!













回复此楼
yshany
