24小时热门版块排行榜    

CyRhmU.jpeg
查看: 16806  |  回复: 454
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

[资源] 再来一本经典书籍----Strengthening mechanisms in crystal plasticity

这本书值得一看,理论概括的较全面,希望对下载的朋友有所帮助!
Synopsis
The strengthening of metals by a variety of means has been of interest over much of history. However, the elucidation of the actual mechanisms involved in the processes of alloying and work hardening, and the related processes of metals as a scientific pursuit, has become possible only through the parallel developments in dislocation theory and in definitive experimental tools of electron microscopy and X-ray diffraction. The important developments over the past several decades in the mechanistic understanding of the often complex processes of interaction of dislocations with each other, with solute atoms and with precipitates during plastic flow have largely remained scattered in the professional literature. This has made it difficult for students and professionals to have ready access to this subject as a whole. While there are some excellent reviews of certain aspects of the subject, there is presently no single comprehensive coverage available of the central mechanisms and their modelling.

The present book on Strengthening Mechanisms in Crystal Plasticity provides such a coverage in a generally transparent and readily understandable form. It is intended as an advanced text for graduate students in materials science and mechanical engineering. The central processes of strengthening that are presented are modeled by dislocation mechanics in detail and the results are compared extensively with the best available experimental information. The form of the coverage is intended to inspire students or professional practitioners in the field to develop their own models of similar or related phenomena and, finally, engage in more advanced computational simulations, guided by the book.

Biography

Ali S. Argon Quentin Berg Professor, Emeritus Department of Mechanical Engineering Massachusetts Institute of Technology
(Cambridge, Massachusetts)
Degrees:
B.S., Mechanical Engineering, Purdue University, (1952);
S.M., Mechanical Engineering, Massachusetts Institute of Technology, (1953);
Sc.D., Massachusetts Institute of Technology, (1956).

Honors:
Charles Russ Richards Award of the ASME (American Society of Mechanical Engineers) (1976);
Fellow of the American Physical Society (1987);
Member of the National Academy of Engineering (1989);
Nadai Medal of the ASME (1998);
Staudinger Duerer Medal of the ETH (Eidgenoessische Technische Hochschule) of Zurich, Switzerland (1999);
Heyn Medal of the DGM (Deutche Gesellschaft fur Materialkunde), (2004);
D.Eng., (h.c); Purdue University, (2005).

Editorial Reviews - Strengthening Mechanisms in Crystal Plasticity
Features -Strengthening Mechanisms in Crystal Plasticity
Table of Contents
Table of Contents
List of Symbols     xv
Structure of Crystalline Solids and the "Defect State"     1
Overview     1
Principal Crystal Structures of Interest     2
Small-Strain Elasticity in Crystals     4
Hooke's Law     4
Orthorhombic Crystals     9
Hexagonal Crystals     9
Cubic Crystals     10
Isotropic Materials     10
Temperature and Strain Dependence of Elastic Response     11
Inelastic Deformation and the Role of Crystal Defects     13
Vacancies and Interstitials     14
Line Properties of Dislocations     17
Topology and Stress Fields of Dislocations     17
Line Energies of Dislocations     20
Planar Faults     22
References     25
Dislocation Stress Fields in a Finite Cylinder     26
Kinematics and Kinetics of Crystal Plasticity     27
Overview     27
Kinematics of Inelastic Deformation     27
Plasticity Resulting from Shear Transformations     27
Plasticity Resulting from Dislocation Glide     29
Lattice Rotations Accompanying Slip     31
Flexure and Motion of Dislocations under Stress     33
Interaction of a Dislocation Line with an External Stress     33
Interaction Energies of Dislocations with Stresses External to Them     35
Interaction of a Dislocation with Free Surfaces and Inhomogeneities     36
Line Tension of a Dislocation     37
Uniformly Moving Dislocations and The Dislocation Mass     39
The Basic Differential Equation for a Moving Dislocation Line     40
The Multiplication of Dislocation Line Length     41
The Mechanical Threshold of Deformation     44
Elements of Thermally Activated Deformation     45
General Principles     45
Principal Activation Parameters for Crystal Plasticity     49
Selection of Slip Systems in Specific Crystal Structures     52
Dislocations in Close-packed Structures     54
Dissociation of Perfect Dislocations in FCC     54
The Thompson Tetrahedron and Other Partial Dislocations     57
The Burgers Vector/Material Displacement Rule     59
Dislocation Reactions and Sessile Locks     60
Plastic Deformation by Shear Transformations     62
Types of Transformation     62
Deformation Twinning     62
Stress-induced Martensitic Transformations     64
Kinking      66
References     68
Overview of Strengthening Mechanisms     70
Introduction     70
The Continuum Plasticity Approach to Strengthening Compared with the Dislocation Mechanics Approach     70
The Lattice Resistance     73
Solid-solution Strengthening     73
Precipitation Strengthening     74
Strengthening by Strain Hardening     76
Phenomena Associated with Strengthening mechanisms     77
References     77
The Lattice Resistance     78
Overview     78
Model of a Dislocation in a Discrete Lattice     78
The Peierls-Nabarro Model of an Edge Dislocation-Updated     78
The Stress to Move the Dislocation     81
Inception of Plastic Deformation     85
HCP and FCC Metals     85
BCC Metals     87
Structure of the Cores of Screw Dislocations in BCC Metals     89
Temperature and Strain Rate Dependence of the Lattice Resistance in BCC Metals     94
The Nature of Thermal Assistance over a Lattice Energy Barrier     94
Lattice Potentials     98
Shapes and Energies of Geometrical Kinks     99
Double-kink Energy in Regime I      101
Double-kink Energy in Regime II     102
The Plastic Strain Rate in BCC Metals     104
The Preexponential Factor and the Net Shear Rate     104
Temperature and Strain Rate Dependence of the Plastic Resistance     106
Comparison of Theory with Experiments on BCC Transition Metals     108
The Lattice Resistance of Silicon     114
Dislocations in Silicon     114
Dislocation Mobility in Silicon     118
Models of the Dislocation Core Structure in Silicon     119
Model of Dislocation Motion     123
Comparison of Models with Experiments     128
The Phonon Drag     132
References     133
Solid-solution Strengthening     136
Overview     136
Forms of Interaction of Solute Atoms with Dislocations in FCC Metals     136
Overview     136
The Size Misfit Interaction     137
The Modulus Misfit Interaction     139
Combined Size and Modulus Misfit Interactions     141
Forms of Sampling of the Solute Field by a Dislocation in an FCC Metal     145
The Solid-solution Resistance of FCC Alloys     149
The Athermal Resistance     149
Thermally Assisted Advance of a Dislocation in a Field of Solute Atoms in an FCC Metal     151
Comparison of Solid-solution-strengthening Models for FCC Metals with Experiments     153
Overview of Experimental Information     153
Peak Solute Interaction Forces     155
Dependence of Flow Stress on Solute Concentration     156
Comparison of Temperature Dependence of CRSS between Experiments and Theoretical Models     157
Summary of Solid-solution Strengthening of FCC Alloys     159
The "Stress Equivalence" of the Solid-solution Resistance of FCC Alloys     159
The Plateau Resistance     163
Solid-solution Strengthening of BCC Metals by Substitutional Solute Atoms     163
Overview of Phenomena     163
Experimental Manifestations of BCC Solid-solution Alloy Systems     165
Interactions of Solute Atoms with Screw Dislocations in BCC Metals     166
Overview of Model of Interaction of Solute Atoms with Screw Dislocation Cores     166
Interaction of Solute Atoms with Screw Dislocation Cores     168
Binding Potential of Solutes to Screw Dislocation Cores     170
The Shear Resistance     172
The Athermal Resistance at the Plateau     172
Resistance Governed by Kink Mobility     173
Double-kink-nucleation-controlled Resistance      177
Combination of Resistances     180
The Strain Rate Dependence of the Flow Stress in the Plateau Range     181
Comparison of Model Results with Experiments     184
The Athermal Resistance at the Plateau     184
Kink-mobility-controlled Plastic Resistance     185
Double-kink-nucleation-controlled Resistance     187
Strain Rate Dependence of the Flow Stress in the Plateau Region, and Activation Volumes     189
References     191
Precipitation Strengthening     193
Overview     193
Formation of Second Phases in the Form of Precipitate Particles, Heterogeneous Domains, or other Lattice Defect Clusters     194
Discrete Precipitates     194
Spinodal-decomposition Domains     198
Defect Clusters and Nanovoids     199
Sampling of Precipitates by Dislocations     200
Precipitate Shapes and Sizes     200
Two Forms of Interaction of Precipitates with Dislocations     201
Statistics of Sampling Random Point Obstacles in a Plane     202
Sampling Point Obstacles of Different Kinds     207
Sampling Obstacles of Finite Width     208
Precipitate Growth, Peak Aging, and Overaging     212
Thermally Assisted Motion of Dislocations through a Field of Penetrable Obstacles     213
Specific Mechanisms of Precipitation Strengthening     219
Overview     219
Chemical Strengthening, or Resistance to Interface Step Production in Shearing     220
Stacking-fault Strengthening     223
Atomic-order Strengthening     235
Size Misfit Strengthening (Coherency Strengthening)     247
Modulus Misfit Strengthening     256
The Orowan Resistance and Dispersion Strengthening     264
Strengthening by Spinodal-decomposition Microstructures     267
Precipitate-like Obstacles     271
References     279
Strain Hardening     283
Overview     283
Features of Deformation     284
Active Slip Systems in FCC Metals     284
Stress-Strain Curves     286
Slip Distributions     292
Dislocation Microstructures     294
Strain-hardening Models     306
Overview     306
Dislocation Intersections     307
Stage I Strain Hardening     312
Stage II Strain Hardening     317
Ingredients of Stage III Hardening     320
Components of Strain Hardening in Stage III     325
Recovery Processes in Stage III     330
Total Strain-hardening Rate in Stage III     334
Strain Hardening in Stage IV     336
Stage V Deformation with No Strain Hardening     340
Strain Hardening in Other Crystal Structures     340
References     340
Deformation Instabilities, Polycrystals, Flow in Metals with Nanostructure, Superposition of Strengthening Mechanisms, and Transition to Continuum Plasticity     344
Overview     344
Yield Phenomena     345
Balance between the Interplane and the Intraplane Resistances and the Mobile Dislocation Density     349
The Portevin-Le Chatelier Effect and Jerky Flow     351
Dynamic Overshoot at Low Temperatures     355
Plastic Deformation in Polycrystals     358
Plastic Resistance of Polycrystals     358
Evolution of Deformation Textures     360
Plastic Deformation in the Presence of Heterogeneities     364
Geometrically Necessary Dislocations     364
Rise in Flow Stress and Enhanced Strain-hardening-rate Effects of Geometrically Necessary Dislocations     364
Grain Boundary Strengthening     370
Plasticity in Metals with Nanoscale Microstructure     376
Superposition of Deformation Resistances     382
The Bauschinger Effect     386
Phenomenological Continuum Plasticity     388
Conditions of Plastic Flow in the Mathematical Theory of Plasticity     388
Transition from Dislocation Mechanics to Continuum Mechanics     389
References     391
Author Index     394
Subject Index     399
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : Strengtheningmechanismsincrystalplasticity.pdf
  • 2012-07-03 16:45:59, 4.97 M

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

xjtu_mao

铁虫 (初入文坛)


★★★★★ 五星级,优秀推荐

A.S. Argon 是很nice的人。好书。谢谢lz。
114楼2013-03-14 22:10:34
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 455 个回答

junhongjia

木虫 (小有名气)


★★★★★ 五星级,优秀推荐

谢谢LZ,昨天正在需找此资源,super Thanks。
11楼2012-07-04 08:41:39
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
毛猴2楼
2012-07-03 18:56   回复  
五星好评  顶一下,感谢分享!
毛猴4楼
2012-07-03 19:47   回复  
顶一下,感谢分享!
asaint_nj5楼
2012-07-03 20:20   回复  
五星好评  顶一下,感谢分享!
Image69756楼
2012-07-03 20:59   回复  
五星好评  顶一下,感谢分享!
broogood7楼
2012-07-03 22:40   回复  
五星好评  顶一下,感谢分享!
yaweidong8楼
2012-07-03 23:38   回复  
五星好评  顶一下,感谢分享!
在路上9楼
2012-07-04 00:35   回复  
五星好评  顶一下,感谢分享!
jerry201110楼
2012-07-04 08:17   回复  
五星好评  顶一下,感谢分享!
linzi61312楼
2012-07-04 08:54   回复  
五星好评  顶一下,感谢分享!
xsf00713楼
2012-07-04 08:56   回复  
三星好评  顶一下,感谢分享!
2012-07-04 08:59   回复  
三星好评  顶一下,感谢分享!
普通表情 高级回复(可上传附件)
信息提示
请填处理意见