24小时热门版块排行榜    

查看: 858  |  回复: 4
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

hzsh2009

铜虫 (小有名气)

[求助] X^2+Y^2+Z^2=7W^2

如题,证明此等式没有整数解。       (提示,用模8来做)
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hzsh2009

铜虫 (小有名气)

引用回帖:
2楼: Originally posted by acmuser at 2012-05-06 04:22:19:
Without loss of generality, suppose the common divisor of X, Y, Z, W is 1, then some of them have to be odd numbers. Notice that mod((2k+1)^2,8)=1, if W is odd, then mod(RHS, 8)=7, no such X,Y,Z th ...

就是不可能X, Y, Z, W都是even的吗?
4楼2012-05-06 04:51:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 5 个回答

acmuser

银虫 (小有名气)

【答案】应助回帖

★ ★ ★ ★ ★
感谢参与,应助指数 +1
hzsh2009: 金币+5, ★★★★★最佳答案 2012-05-06 06:32:19
Without loss of generality, suppose the common divisor of X, Y, Z, W is 1, then some of them have to be odd numbers. Notice that mod((2k+1)^2,8)=1, if W is odd, then mod(RHS, 8)=7, no such X,Y,Z that mod(X^2+Y^2+Z^2,8)=7, so W has to be even. Since the common divisor of X, Y, Z, W is 1, two of X, Y, Z have to be odd, therefore, mod(LHS, 8)=2 or 6, which is also impossible.

QED.
2楼2012-05-06 04:22:19
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hzsh2009

铜虫 (小有名气)

引用回帖:
2楼: Originally posted by acmuser at 2012-05-06 04:22:19:
Without loss of generality, suppose the common divisor of X, Y, Z, W is 1, then some of them have to be odd numbers. Notice that mod((2k+1)^2,8)=1, if W is odd, then mod(RHS, 8)=7, no such X,Y,Z th ...

为什么能假设common divisor of X, Y, Z, W is 1呢?
3楼2012-05-06 04:44:47
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

hzsh2009

铜虫 (小有名气)

引用回帖:
2楼: Originally posted by acmuser at 2012-05-06 04:22:19:
Without loss of generality, suppose the common divisor of X, Y, Z, W is 1, then some of them have to be odd numbers. Notice that mod((2k+1)^2,8)=1, if W is odd, then mod(RHS, 8)=7, no such X,Y,Z th ...

actually, never mind, I see what you saying there. THX
5楼2012-05-06 06:32:10
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见