24小时热门版块排行榜    

查看: 1677  |  回复: 14
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

llaier

至尊木虫 (职业作家)

[求助] 求助证明一个数列收敛

已知f(x)是上凸单调递增连续函数,g(x)是下凸单调递减连续函数。f(x)和g(x)相交于点P。s1和s2是横坐标值,f(x)和g(x)相对应的点为a1,b1,a2,b2,如图所示。直线a1a2与b1b2相交于点P1,P1对应的横坐标为s3,过P1作与x轴垂直的直线,与f(x)和g(x)分别相交于点a3和b3。然后,以a1,b1,a3,b3为四个点,作直线a1a3与b1b3,两条直线相交于点P2。依次生成交点序列{Pn},求证Pn-->P。

序列Pn生成示意图
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

shtlyou

木虫 (小有名气)

【答案】应助回帖

★ ★
llaier: 金币+2, 有帮助, 谢谢帮助! 2012-04-25 13:05:38
收敛性证明:设{Pn}中任意一点为Pk,其横坐标为pk,过Pk作x轴垂线交f(x)于ak+2,交g(x)于bk+2.横坐标为sk+2,(pk=sk+2)。由上述证明可知sk+2>p.设直线a1ak+2:y=f1(x)=mx+j;直线b1bk+2:y=g1(x)=ex+t。h(x)=f1(x)-g1(x)=(m-e)x+j-t。由题意易得h(s1)<0,h(sk+2)>0.且sk+2>s1可得(m-e)>0,h(x)为单调递增函数,可得h(x)在区间[s1,sk+2]上存在唯一点c,s1<c<sk+2,使得h(c)=0,易得满足此条件的c值即为直线a1ak+2与直线b1bk+2交点的横坐标pk+1,得出pk+1=c<sk+2=pk。故对于{pn}中任意pk,pk+1总有pk>pk+1.由此可得{pn}为单调递减数列,且对任意pk均大于p,即此数列为单调递减且有下界的数列。故数列{pn}收敛。证毕

[ 发自手机版 http://muchong.com/3g ]
想过成功,想过失败,但从来没有想过放弃。只为成功找办法,不为失败找理由!
10楼2012-04-25 00:41:12
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 15 个回答

shtlyou

木虫 (小有名气)

【答案】应助回帖

感谢参与,应助指数 +1
你说的不是很清晰,s1和s2是横坐标值,s1和s2是任意数还是有一些限制条件?还有你说的点Pn 这里的交点序列{Pn中的pn是指该点的横坐标还是纵坐标?你回答了我这些疑惑的话这道题我觉得我还是很容易把它做出来的,到时候跟你说一下。
想过成功,想过失败,但从来没有想过放弃。只为成功找办法,不为失败找理由!
2楼2012-04-24 08:07:48
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

llaier

至尊木虫 (职业作家)

您好!s1和s2是任意的两个横坐标值,分别位于交点P的两侧。交点序列{Pn}中的Pn是指该点的横坐标。非常感谢!!!
3楼2012-04-24 09:26:31
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

cars

金虫 (小有名气)

【答案】应助回帖

感谢参与,应助指数 +1
提一个思路,供你参考
可将题转化成简单一点,原题等价于
上凸单调递增连续函数h(x)与x轴交于x=0,任取x1<0,有f(x1)<0,
任取x2>0,有f(x2)>0,连A(x1,f(x1))点和B(x2,f(x2)),AB与x轴交于x3。
证xn趋于0。
4楼2012-04-24 11:45:34
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
信息提示
请填处理意见