24小时热门版块排行榜    

CyRhmU.jpeg
查看: 7786  |  回复: 35
当前主题已经存档。

zhenmafudan

金虫 (著名写手)


[交流] 真正的催化大师

大家都在讨论谁是催化大师。我认为很多专家是催化大师,但是评价催化大师不
能光看文章数量、杂志名称、担任什么杂志的编委、得过什么奖,而是应该真正
读过他们的文章,知道好在哪里。

的确,很多催化大师发表了几百篇文章,但是君不见几百篇文章都是类似的吗?
无非是拿一个表征方法几十年重复同样的体系,换一个催化剂出一篇文章。有
的催化大师出了很多文章,但是不能因为他是“首先涉足了这个体系”,就把他
顶礼膜拜。他是“首先涉足了这个体系”,但也许工作没有深入地做,文章没有
深入探讨,只是罗列了一堆数据说他首次报道。

我看一个催化专家,更注重看他一系列文章:
[1] 看具体文章的写法,从中获得有用的做科研和写作的启发,领会作者严肃
     的科研态度。
[2] 看他一系列文章,看他怎么开展一个课题,使课题不会“死掉”。


根据这些标准,我欣赏的催化大师是瑞士的Alfons Baiker。他有600多篇文章
,涉足了好几个领域。值得学习的地方是我看了他一百多篇文章,发现他的
文章每篇都很高。无论是实验设计,还是写作风格,都超群。他最著名的工作
是多相手性催化。如果是中国人作催化,一般研究焙烧温度、负载量、反应
条件的影响,如果是这么做的话,很难发表Journal of Catalysis。但是Baiker
一篇文章当中就有三方面的内容:(1)催化反应结果;(2)原位红外表征
来鉴别反应机理;(3)量子化学计算来和试验结果配套。他文章的语言、文
笔和讨论都非常超群,读了以后感到他并不是为了发表文章而发表文章的人,
而是个非常严肃的科学家。另外,他的“催化反应结果”的着眼点有时候并不是
什么为了提高活性选择性,而是为了设计“模型催化诊断试验”来研究反应机理
。比如他研究丙酮酸酯在某种手性促进剂促进的白金表面的反应,一般的人
只会改变反应条件,但是他让反应进行着,突然在反应进行到一半的时候,在
反应器里面加入另外一种手性促进剂看看有什么影响。显然,在工业催化中
是不会这个做试验的,但是他的这种实验能够提供机理性的认识,使我感到
智慧的享受。

还有一个写文章写得好的人是台湾大学的牟中原。我看过他的很多文章,包括
固体超强酸、中孔材料、纳米金催化的文章,发现他并不是首次做一些东西
,很多是在跟着别人做,但是却能够做出自己的一片天空。他最近在Journal
of Catalysis 和Journal of Physical Chemiatry B上发表了几篇好文章,发现
在负载型金催化剂里面加点银,虽然使合金的尺寸急剧增加,但是却能够
提高催化活性,而根据“教科书理论”,金颗粒在三个纳米的时候效果最好,
因此牟中原的发现是“反教科书理论”。文章的妙处还在于他的文笔非常优美,
这在他的Introduction部分就能够完全反映出来。他的Introduction往往能够
很贴切地指出为什么他发表这篇文章是必须的,为什么审稿人必须让他的文章
通过。他还自然地告诉读者他在这篇文章之前还作了什么相关工作,为什么
以前的工作和现在的工作是不重合的,怎么从以前的工作逻辑地想到现在的
试验点子。

看了以上两个作者的文章,使我的写作水平大大提高。

需要说明的是很多人都说要把精力多花在试验上面,而不是写作上。其实这也
对,但是主要是针对没有科研经验的硕士一年级学生说的,而如果要使中国人
的科研更上一层楼,写作非常重要。写作不是叫你吹牛、浮报,而是挖掘数据
的意义:What can we learn after reading your paper? What do you have
other than reporting data? What is the “智力贡献" of your paper? “智力贡献"
指的是试验中用到什么新的方法学,而不是简单地移植、简单的机械重复。

再说到”表面催化”吧,我也读过很多文章。发现有名的人并非每篇文章都好,
但是有些人的有些文章,无论在试验设计,还是写作上都非常超群。提供一些
文章:

[1] H. Idriss, K.G. Pierce, M.A. Barteau, JACS 116 (1994) 3063.
注:科研论文

[2] K.G. Pierce, M.A. Barteau, J. Phys. Chem. 98 (1994) 3882.
注:科研论文

[3] K.G. Pierce, M.A. Barteau, J. Mol. Catal. 94 (1994) 389.
注:科研论文

[4] B.E. Bent, Chem. Rev. 96 (1996) 1361.
注:综述

[5] S.F. Bent, Surf. Sci. 500 (2002) 879.
注:介绍型综述(简单版)

[6] S.F. Bent, J. Phys. Chem. B 106 (2002) 2830.
注:Account型综述

[7] J.C. de Jesús, J. Carrazza, P. Pereira, F. Zaera, Surf. Sci. 397 (1998) 34.
注:科研论文

[8] N. R. Gleason, F. Zaera, Surf. Sci. 385 (1997) 294.
注:科研论文

[9] J.C. de Jesús, P. Pereira, J. Carrazza, F. Zaera, Surf. Sci. 369 (1996) 217.
注:科研论文

[10] F. Zaera, Catal. Today 81 (2003) 149.
注:Account型综述

[11] X.Y. Deng, C.M. Friend, JACS 127 (2005) 17178.
注:快报

本人学习了几千篇文献后感到科技写作能力大有长进,选取最近两篇文章:

[1] Z. Ma, F. Zaera, Surf. Sci. Rep. 61 (2006) 229.
     http://dx.doi.org/10.1016/j.surfrep.2006.03.001

[2] Z. Ma, J. Colloid Interface Sci. (2006) in press.
     http://dx.doi.org/10.1016/j.jcis.2006.09.005

[ Last edited by berlin on 2006-11-13 at 16:07 ]
回复此楼

» 收录本帖的淘帖专辑推荐

催化百科 催化&材料 光伏&光催化 催化大牛
dbingo 如何做好研究 催化资料 思想波一波
phd准备 催化化学 安卓收藏夹 环境材料
化学工程与工艺专辑

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

wszynh

金虫 (小有名气)

1

好文
2楼2006-09-29 08:33:07
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

berlin

荣誉版主 (职业作家)

优秀版主优秀区长

1

受益匪浅,感谢楼主
让我与你握别-再轻轻抽出我的手-知道思念从此生根...年华从此停顿-热泪在心中汇成河流-是那万般无奈的凝视...就把祝福别在襟上吧-而明日-明日又隔天涯
3楼2006-09-29 08:36:11
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

sheriff-GG

金虫 (小有名气)

谢谢楼主的发言,很好,值得大家学习
4楼2006-09-29 10:13:37
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

思考者

木虫 (正式写手)

0.5

Title: A novel efficient Au-Ag alloy catalyst system: preparation, activity, and characterization
Author(s): Wang AQ, Liu JH, Lin SD, Lin TS, Mou CY
Source: JOURNAL OF CATALYSIS 233 (1): 186-197 JUL 1 2005
It is not enough to discover something new; one has to demonstrate its significance, a much more difficult task.
5楼2006-09-29 11:13:16
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

lhcmzw

铜虫 (初入文坛)

6楼2006-09-29 11:24:37
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

思考者

木虫 (正式写手)

1. Introduction
Supported gold catalysts have been extensively investigated for low-temperature CO oxidation since Haruta's pioneering work [1], [2], [3], [4] and [5]. It has been found that the catalytic activity of gold is remarkably sensitive to the size of the gold particle [6], [7], [8], [9] and [10], the preparation methods [11], [12], [13] and [14], and the nature of the support [15], [16], [17], [18] and [19]. Therefore, most of the reported works focused on the tuning of the particle size, modification of the support, and the pretreatment conditions [20], [21] and [22]. Both experimental works and theoretical calculations show that the adsorption and activation of O2 are the key steps in this reaction [23], [24], [25] and [26]. For active supports, such as Fe2O3, and TiO2, the oxygen activation occurred on the support surface and the CO oxidation reaction occurred at the periphery between the support and the gold nanoparticles [2] and [16]. Thus, the requirement for very small gold nanoparticles may arise mainly from larger contact peripherals. However, in the case of inert supports, such as SiO2, the adsorption of both CO and O2 has to be carried out on the gold surface. Then the size of the gold nanoparticle plays a paramount role in this reaction [27] and [28].

Conceivably, an alternative way to modify the gold-based catalysts is to search for a second metal that can form an alloy with gold and possesses stronger affinity with O2 than gold. That is, where two different metal atoms are in intimate proximity to each other, as in an alloy, the activated O2 can easily react with the activated CO at a neighboring gold atom to give the product CO2. Some success along this line has recently been reported. Häkkinen et al. [22] have confirmed that doping Au with Sr significantly changes the bonding and activation of O2 compared with that in the pure gold, resulting in an enhanced activity for CO oxidation. However, their soft-landing method is not suitable for the practical preparation of a large amount of catalyst. Guczi et al. [29] and [30] investigated the Au–Pd bimetallic system for CO oxidation. They found that when supported on SiO2, the activity of bimetallic catalyst was inferior to that of monometallic Pd/SiO2 catalyst. When supported on TiO2, the bimetallic catalyst exhibited a slightly synergistic effect. This may due to the fact that Pd adsorbs O2 very strongly and weakens the role of gold. Baiker et al. [31] used amorphous metal alloy as the precursor for the preparation of Au–Ag/ZrO2 and found that the alloy catalyst shows good activity and stability for CO oxidation. However, because Au/ZrO2 itself is a very active catalyst, the alloying of gold with silver did not seem to have a significant promoting effect.

It is known that the electron transfer from metal to O2 is a key factor for the chemisorption of oxygen on a metal surface [32] and [33]. Electron transfer is difficult on a Au(111) surface, since the gold surface has a high work function [34]. Relative to gold, both Cu and Ag have a larger electron-donating ability. It is known that the adsorption of O2 occurs most easily on Cu, and next on Ag, but not on Au. On the other hand, both gold and copper are able to adsorb CO, but silver is not [34] and [35]. Thus, combining gold with silver may be an alternative avenue to achieving a catalyst with higher activity for CO oxidation.

In our earlier work, we developed a simple one-pot method to incorporate surfactant-protected gold particles into mesoporous MCM-41 [36]. Because the gold particles obtained with this method have a large size of about 7–8 nm, the catalytic activity is not so high. More recently, Au–Ag alloy nanoparticles supported on mesoporous aluminosilicate were prepared by this one-pot synthesis method, with the use of hexadecyltrimethylammonium bromide (CTAB) both as a stabilizing agent for nanoparticles and as a template for the formation of mesoporous structure [37]. The alloy catalyst exhibited exceptionally high activity in low-temperature (250 K) CO oxidation. Although monometallic Au@MCM-41 and Ag@MCM-41 show no activity at this temperature, the Au–Ag alloy system shows a strongly synergistic effect in high catalytic activity.

Our previous communication was a brief report on catalytic activities of the Au–Ag alloy nanocatalyst [37]. A fundamental understanding from detailed characterizations of the catalytic system was not available up to now. In this work, we prepared a series of Au–Ag alloy catalysts supported on MCM-41 to study the variations of catalytic activities with respect to changing temperature and composition. Many characterization techniques were used to study the catalyst system, such as nitrogen adsorption, XRD, XPS, EXAFS, UV–vis, and EPR spectroscopy. Based on these detailed studies, we then discuss the origin of the unique synergistic effect in the catalysis of CO oxidation.

2. Experimental
It is not enough to discover something new; one has to demonstrate its significance, a much more difficult task.
7楼2006-09-29 11:30:24
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

jbz1124

金虫 (著名写手)

1

读后受益非浅,对我们做好科研帮助很大。楼主能传上一些上述催化大师的代表作吗?
8楼2006-09-29 13:12:18
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

daiqiguang

荣誉版主 (知名作家)

优秀版主

0.5

有的催化大师出了很多文章,但是不能因为他是“首先涉足了这个体系”,就把他
顶礼膜拜。他是“首先涉足了这个体系”,但也许工作没有深入地做,文章没有
深入探讨,只是罗列了一堆数据说他首次报道。


haaha,我一直不敢苟同此类人物为催化大师,文章写得好!!
有事请到www.chemj.cn上找chemj,谢谢
9楼2006-09-29 16:03:01
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

星海拾贝

金虫 (小有名气)

1

虽然都催化已有很长一段时间,但是很茫然。读完楼主的帖子觉得有很有用。
10楼2006-09-29 18:58:41
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 zhenmafudan 的主题更新
普通表情 高级回复(可上传附件)
信息提示
请填处理意见