| 查看: 4464 | 回复: 14 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
honey宝贝金虫 (初入文坛)
|
[交流]
【转载】Gaussian入门技巧六(关于虚频)已有14人参与
|
||
|
关于虚频 首先,什么是频率。 中学的时候我们学过简谐振动,对应的回复力是f=-kx,对应的能量曲线,是一个开口向上的二次函数E=kx^2/2. 这样的振动,对应的x=0的点是能量极小值点(简单情况下也就是最小值点)。这时的振动频率我们也会求:ω=2π sqrt(k/m)。显然它是一个正的频率,也就是通常意义下的振动频率。 那么,一维情况下,如果能量曲线是一个开口向下的二次曲线呢?首先,从能量上看,这是个不稳定的点,中学的物理书上称为“不稳平衡”。用现在的观点看,就是这一点导数是零(受力为0),且是能量极大值。如果套用上面的公式,“回复力”f=-k'x(实际上已经不是回复,而是让x越来越远了),这里k'是个负数,ω=2π sqrt(k'/m)显然就是一个虚数了,即所谓的虚频。Gaussian里面给出一个负的频率,就是对应这个虚频的。 实际情况下,分子的能量是一个高维的势能面,构型优化的时候,有时得到了极小值点,这样这个点的任意方向上,都可以近似为开口向上的二次函数,这样这里对应的振动频率就都是正的。对于极大值点,在每个方向都是开口向下的二次函数,那么频率就会都是负的——当然一般优化很少会遇到这样的情况。对于频率有正有负的情况,说明找到的点在某些方向上是极大值,有些方向上是极小值。如果要得到稳定的能量最低构型,显然需要通过微调分子的构型,消去所有的虚频。如何微调?要看虚频的振动方向。想象着虚频对应的就是开口向下的二次函数,显然,把分子坐标按照振动的方向移动一点点,分子应该就可以顺着势能面找到新的稳定点,但是也不能太小。而所谓的过渡态,则是连接反应物和产物之间的最低能量路径上的能量极大值。好比山谷中的A,B两点,它们之间的一个小土丘,就是过渡态,从A到B的反应,需要越过的是这个小土丘,而不是两边的高山。这样,过渡态就是在一个方向上是极大值,而在其它方向上都是极小值的点。因此,过渡态只有一个虚频。 优化得到虚频,消虚频的方法,就是根据虚频对应的振动位移(输出文件每一个频率下面都有一个类似坐标的3列数值,给出的就是每个原子在这个振动频率时候的移动方式),把这些位移,乘以一个适当大小的因子,直接和原来平衡构型相加,就得到新的构型了。 举例说明: #HF/3-21G opt freq test 0 2 H 0.0 0.0 0.0 H 0.0 0.0 1.0 H 0.0 0.0 -1.0 上面的计算,是优化一个 H-H-H的直线构型然后算频率。我们知道,3个H的稳定构型,应该是一个H2分子,加上一个H原子。但是由于我们输入的时候,中间H原子两边的H的键长相等,因此,在这个对称性的限制下,结果给出的“稳定构型”是: H 0.000000 0.000000 0.000000 H 0.000000 0.000000 0.934091 H 0.000000 0.000000 -0.934091 频率分析,有一个虚频: 1 2 3 SGU PIU PIU Frequencies -- -2291.1909 1121.1486 1121.1486 Red. masses -- 1.0078 1.0078 1.0078 Frc consts -- 3.1172 0.7464 0.7464 IR Inten -- 42.9706 8.8167 8.8167 Raman Activ -- 0.0000 0.0000 0.0000 Depolar (P) -- 0.0000 0.0000 0.0000 Depolar (U) -- 0.0000 0.0000 0.0000 Atom AN X Y Z X Y Z X Y Z 1 1 0.00 0.00 0.82 0.82 0.03 0.00 -0.03 0.82 0.00 2 1 0.00 0.00 -0.41 -0.41 -0.02 0.00 0.02 -0.41 0.00 3 1 0.00 0.00 -0.41 -0.41 -0.02 0.00 0.02 -0.41 0.00 第一个是虚频。可以看出,其振动模式是:中间的H的z坐标变大,两边的两个H的z坐标变小,(然后是中间的H的z坐标变小,两边的H的z坐标变大,完成一次振动),这个如果还不清楚,画一下图就知道了。 现在,我们就把原来的坐标,加上振动模式对应的坐标: H 0.000000 0.000000 0.000000 H 0.000000 0.000000 0.934091 + H 0.000000 0.000000 -0.934091 0.00 0.00 0.82 0.00 0.00 -0.41 0.00 0.00 -0.41 直接加的结果,是 H 0.000000 0.000000 0.820000 H 0.000000 0.000000 0.524091 H 0.000000 0.000000 -1.344091 画图知道,显然对原来的构型,变化太多了。对这个例子,如果取一个系数0.1乘以振动坐标,再求和,那么结果就是: H 0.000000 0.000000 0.082000 H 0.000000 0.000000 0.893091 H 0.000000 0.000000 -0.975091 显然就合理多了。用这个坐标去重新优化,就可以得到真正的没有虚频的稳定结构了。 这个系数0.1,只是个经验的数值,对于不同体系,可以自己设定。设置过小,会得到同样的虚频,设置过大,可能会得到别的构型(当然也可能碰巧得到更好的构型)。 频率分析只能在势能面的稳定点进行,这样,频率分析就必须在已经优化好的结构上进行。频率分析的另外一个用处是判断稳定点的本质。稳定点表述的是在势能面上力为零的点,它即可能是极小值,也可能是鞍点。极小值在势能面的各个方向都是极小的。而鞍点则是在某些方向上是极小的,但在某一个方向上是极大的,因为鞍点是连接两个极小值的点。有关鞍点的信息: 1.负的频率2.频率相应简正振动的模式 当一个结构产生负的振动频率时,可以表明在该振动方向可能存在着能量更低的结构。判断所得鞍点是不是需要的鞍点的方法,就是察看它的简正振动模式,分析是不是可以导向所需要的产物或反应物。进一步的,更好的办法是通过IRC计算来判断反应物,产物与得到的鞍点是否有关系。 |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
有偿调查问卷,一元一份,有意请私我(不要豆包)
已经有1人回复
书籍求助:汽车市场营销理论与实务(电子版)——章小平
已经有0人回复
物理化学论文润色/翻译怎么收费?
已经有296人回复
求助ORCA计算单点能的输入输出文件
已经有0人回复
中教金源的流动池
已经有0人回复
RSC ADV状态问题
已经有4人回复
湖南大学招收锂离子电池、离子液体、高分子与凝胶材料、电催化方向博士生多名
已经有7人回复
南京大学蔡亮课题组诚招2026年申请-考核制博士生2-3名(电解水制氢,XAFS谱学等)
已经有32人回复
求助各位大佬配位化学学习教材!!!
已经有0人回复
大连海事大学国家级人才团队2026年博士研究生招生启事
已经有10人回复
内蒙古大学青年长江学者王蕾教授课题组2026年博士招聘,2-3人
已经有10人回复
» 本主题相关商家推荐: (我也要在这里推广)
12楼2015-10-27 10:17:49
zmcommon
木虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 1685.3
- 红花: 1
- 帖子: 145
- 在线: 53.6小时
- 虫号: 990007
- 注册: 2010-04-06
- 性别: MM
- 专业: 理论和计算化学
2楼2011-04-02 13:39:58
honey宝贝
金虫 (初入文坛)
- 应助: 0 (幼儿园)
- 金币: 1432.5
- 红花: 4
- 帖子: 42
- 在线: 15.6小时
- 虫号: 1163884
- 注册: 2010-12-06
- 专业: 理论和计算化学
3楼2011-04-06 09:12:01
5楼2011-06-28 17:35:54













回复此楼
zi_cathy
正好用到,谢谢!!