| 查看: 1083 | 回复: 8 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
cityengle2609至尊木虫 (著名写手)
靠谱青年
|
[交流]
【Share】Nobel Prizes in physics (form science)
|
||
|
Nobel Prizes: Still in Its Infancy, Two-Dimensional Crystal Claims Prize Adrian Cho* This year's recipients of the Nobel Prize in physics earned that honor with the most wafer-thin of discoveries and with the help of some Scotch tape. Andre Geim and Konstantin Novoselov of the University of Manchester in the United Kingdom share the prize for their discovery in 2004 of graphene, a one-atom-thick material made of carbon. Only a few years later, the material promises revolutionary advances in electronics and other technologies. "My hope is that graphene ... will change our everyday lives the way plastics did," Geim says. ANDRE GEIM (LEFT); KONSTANTIN NOVOSELOV (RIGHT) CREDITS: RUSSELL HART/UNIVERSITY OF MANCHESTER; © THE NOBEL FOUNDATION (INSET) [Larger version of this image] Graphene had humble beginnings. Geim and Novoselov first produced flakes of it by peeling them off a chunk of graphite using cellophane tape. "It just started as a Friday evening experiment," Novoselov recalls. "We were enjoying doing it." Others had been trying more complicated methods of liberating a single sheet of atoms, says Philip Kim, a physicist at Columbia University. "I was shocked that they were able to get a single layer with such a simple method," Kim says. "We were completely scooped." Early on, graphene fascinated primarily theoretical physicists. Because of the material's two-dimensional nature, the electrons in it conspire to move as though they have no mass, much like particles of light. So just like photons, the electrons must always move, cruising along at their own specific "speed of light." All of this was predicted decades ago, but graphene provided the first example of such odd behavior. Quickly, physicists, engineers, and chemists began to see the potential for applications. Graphene has many bizarre and often contradictory properties. For example, it is flexible like plastic but stronger than diamond, and it conducts electricity like a metal but is transparent like glass. Researchers have figured out how to make sheets measuring tens of centimeters across. They have developed methods to cut the sheets into nanometer-scale patterns and to change graphene's electrical properties by, for example, affixing hydrogen to its surface. That's opened the way to scads of possible applications. The South Korean electronics company Samsung has developed a touch screen from graphene, whereas researchers with IBM have fashioned ultrafast transistors from the stuff. A sieve of graphene might also serve to sequence DNA. Even Novoselov says it's too early to say exactly what uses graphene will find. "Whatever I say now will be wrong because there has been so much progress in its properties and mass production," he says. In that regard, this year's prize could be considered an anomaly. In the past, a few prizes have quickly spotlighted discoveries that upended the prevailing theory; others have recognized advances that over decades had led to ubiquitous applications. This year's prize, by contrast, honors physics that by all accounts is beautiful but not revolutionary. "You don't need a new theory" to understand graphene, says Jeroen van den Brink, a theorist at the Institute for Materials Sciences at the Dresden University of Technology in Germany. At the same time, it celebrates the potential for applications yet to come. "Will this really come into the market?" Kim says. "I think it's really difficult to say." Still, everyone interviewed by Science says Geim and Novoselov thoroughly deserve the prize. The prize is also unusual because one recipient has another claim to fame. In 2000, Geim won a share of an Ig Nobel Prize, a satirical award given out by the publishers of the Annals of Improbable Research, for magnetically levitating a live frog. Geim is the first person to win both prizes. During a press conference announcing the Nobel Prize, Geim reacted with unusual candor to his latest award: "When I got the telephone call, I thought, ‘Shit!’ because it is a life-changing event." |
» 猜你喜欢
招博士
已经有5人回复
青椒八年已不青,大家都被折磨成啥样了?
已经有6人回复
救命帖
已经有9人回复
青年基金C终止
已经有3人回复
26申博求博导推荐-遥感图像处理方向
已经有4人回复
限项规定
已经有7人回复
西南交通大学国家级人才团队2026年博士研究生招生(考核制)—机械、材料、力学方向
已经有3人回复
英文综述是否需要润色及查重
已经有5人回复
为什么nbs上溴 没有产物点出现呢
已经有9人回复

5楼2010-10-08 10:50:11
三更雨~
木虫 (文坛精英)
- ESEPI: 42
- 应助: 0 (幼儿园)
- 贵宾: 0.493
- 金币: 3701.9
- 散金: 4830
- 红花: 31
- 沙发: 69
- 帖子: 11421
- 在线: 1091.2小时
- 虫号: 863892
- 注册: 2009-10-06
- 性别: MM
- 专业: 光谱分析
4楼2010-10-08 10:05:44
6楼2010-10-08 11:03:26
|
本帖内容被屏蔽 |
7楼2010-10-08 13:39:50













回复此楼