24小时热门版块排行榜    

查看: 924  |  回复: 6
当前主题已经存档。
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

xhx020211

金虫 (小有名气)

[交流] 麻烦帮忙给查一篇文章的Sci检索号(UT ISI),先谢谢啦 已有5人参与

麻烦帮忙给查一篇文章的Sci检索号(UT ISI),我们这里没有这个数据库Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization
先谢谢啦。
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

xhx020211

金虫 (小有名气)

不需要啦,谢谢楼上的。
7楼2010-04-16 08:34:44
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 7 个回答

wenfang

木虫 (小有名气)


小木虫(金币+0.5):给个红包,谢谢回帖交流
xhx020211(金币+1): 2010-04-15 09:40
UT  ISI:000269425200033
Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization
CHAOS SOLITONS & FRACTALS
2楼2010-04-15 09:34:10
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

tykd

至尊木虫 (著名写手)


小木虫(金币+0.5):给个红包,谢谢回帖交流
stimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization
作者: Shu YL (Shu, Yonglu)1, Xu HX (Xu, Hongxing)1, Zhao YH (Zhao, Yunhong)1  
来源出版物: CHAOS SOLITONS & FRACTALS    卷: 42    期: 5    页: 2852-2857    出版年: DEC 15 2009   
被引频次: 0     参考文献: 28     引证关系图      
摘要: In this paper, we investigate the ultimate bound and positively invariant set for a new chaotic system via the generalized Lyapunov function theory. For this system, we derive a three-dimensional ellipsoidal ultimate bound and positively invariant set. In addition, the two-dimensional bound with respect to x - z and y - z are established. Finally, the result is applied to the study of completely chaos synchronization, an exact threshold is given with the system parameters. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme. (C) 2009 Elsevier Ltd. All rights reserved.
文献类型: Article  
语言: English  
KeyWords Plus: LORENZ-SYSTEM; CHEN SYSTEM; ATTRACTOR; TRAJECTORIES; EQUATION; CIRCUIT; FAMILY  
通讯作者地址: Xu, HX (通讯作者), Chongqing Univ, Coll Math & Phys, Chongqing 400044, Peoples R China  
地址:
1. Chongqing Univ, Coll Math & Phys, Chongqing 400044, Peoples R China  
电子邮件地址: xhx020211@sina.com  
基金资助致谢:
基金资助机构 授权号
National Nature Youth Foundation of China  10601071  

[显示基金资助信息]   

Project supported by the Foundation item the National Nature Youth Foundation of China (No. 10601071).

出版商: PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND  
学科类别: Mathematics, Interdisciplinary Applications; Physics, Multidisciplinary; Physics, Mathematical  
IDS 号: 489MW  
ISSN: 0960-0779  
DOI: 10.1016/j.chaos.2009.04.003
3楼2010-04-15 09:39:29
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zzdxpyy300

铜虫 (正式写手)

UT  ISI:000269425200033
Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization
CHAOS SOLITONS & FRACTALS
4楼2010-04-15 09:52:58
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见