| 查看: 1078 | 回复: 3 | |||
| 当前主题已经存档。 | |||
ci09220224木虫 (正式写手)
|
[交流]
求助:羰基镍的物理性质
|
||
| CO与镍在什么条件下形成羰基镍,羰基镍的物性指标是什么? |
» 猜你喜欢
乙酰化透明质酸钠的改性实验求助
已经有0人回复
【陕西师范大学】催化化学方向招收2026年博士研究生1名(申请-考核)
已经有4人回复
物理化学论文润色/翻译怎么收费?
已经有214人回复
中国水产科学研究院黄海水产研究所博士后科研工作站2026年博士后招收公告
已经有0人回复
大连海事大学国家级人才团队2026年博士研究生招生启事(氢能)
已经有10人回复
国家级人才课题组招收2026年入学博士
已经有6人回复
意大利米兰理工大学急聘CSC公派留学博士生(物理或无机材料科学方向)
已经有41人回复
求加氢处理工艺与工程(第二版)pdf 李大东 中国石化出版社 9787511436689
已经有0人回复
新加坡ASTAR招收CSC或学校资助联培博士生/访问学生
已经有1人回复
求助Amsterdam Density Functional
已经有0人回复
公派出国有好的选择吗?
已经有0人回复
txglyl
至尊木虫 (职业作家)
- 应助: 75 (初中生)
- 金币: 36460.1
- 红花: 4
- 帖子: 3688
- 在线: 787.3小时
- 虫号: 440870
- 注册: 2007-10-27
- 性别: GG
- 专业: 催化化学
★ ★ ★
zhangwengui330(金币+3,VIP+0):谢谢关注该贴!! 3-2 11:34
zhangwengui330(金币+3,VIP+0):谢谢关注该贴!! 3-2 11:34
|
羰基镍 1.物质的理化常数: 国标编号 61031 CAS号 13463-39-3 中文名称 羰基镍 英文名称 Nickel carbonyl;Nickel tetracarbonyl 别 名 四羰基镍;四碳酰镍 分子式 C4O4Ni;Ni(CO)4 外观与性状 无色挥发性液体,有煤烟气味 分子量 170.73 蒸汽压 53.32kPa/25.8℃ 闪点:<4℃ 熔 点 -25℃ 沸点:43℃ 溶解性 不溶于水,溶于醇等多数有机溶剂 密 度 相对密度(水=1)1.32;相对密度(空气=1)5.9 稳定性 稳定 危险标记 13(剧毒品);34(易燃液体) 主要用途 用于制高纯镍粉,也用于电子工业,及制造塑料中间体,也用作催化剂 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:对呼吸道有刺激作用,并有全身毒作用,可导致肺、肝、脑损害。如肺水肿抢救不及时,可引起死亡。 急性中毒:早期表现有头痛、头晕、步态不稳、视力模糊、眼刺激、恶心、心悸、胸闷、气短等。迟发的症状主要有明显的胸闷、气短、严重呼吸困难、紫绀、咳嗽、咳大量粉红色泡沫痰,心动过速等,这些是肺水肿及弥漫性间质肺炎的表现。 二、毒理学资料及环境行为 毒性:属高毒类。 急性毒性:LD5039mg/kg(大鼠腔膜内);63mg/kg(大鼠皮下);LC5035ppm,7小时(大鼠吸入) 致癌性:镍及其化合物已被国际癌症研究中心(IARC)确认为致癌物。 危险特性:暴露在空气中能自燃。遇明火、高热强烈分解燃烧。能与氧化剂、空气、氧、溴强烈反应,引起燃烧爆炸。 燃烧(分解)产物:一氧化碳。 3.现场应急监测方法: 便携式化学发光检测器;气体检测管法 4.实验室监测方法: 比色法《作业环境空气中有毒物质检测方法》陈安之主编 丁二肟比色法《空气中有害物质的测定方法》(第二版),杭士平主编 5.环境标准: 中国(TJ36-79)车间空气中有害物质的最高容许浓度 0.001mg/m3 6.应急处理处置方法: 一、泄漏应急处理 疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。建议应急处理人员戴正压自给式呼吸器,穿厂商特别推荐的化学防护服(完全隔离)。不要直接接触泄漏物,在确保安全情况下堵漏。喷水雾会减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用沙土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所处置。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。 二、防护措施 呼吸系统防护:可能接触其蒸气时,必须佩带防毒面具。紧急事态抢救或逃生时,应该佩带正压自给式呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿相应的防护服。 手防护:戴防化学品手套。 其它:工作现场禁止吸烟、进食和饮水。工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。进行就业前和定期的体检。 三、急救措施 皮肤接触:脱去污染的衣着,用流动清水冲洗。 眼睛接触:立即提起眼睑,用流动清水冲洗。 吸入:迅速脱离现场至空气新鲜处。注意保暖,保持呼吸道通畅。必要时进行人工呼吸。就医。 食入:误服者给饮大量温水,催吐,就医。 灭火方法:雾状水、泡沫、二氧化碳、砂土。 |
2楼2009-03-01 09:29:41
ci09220224
木虫 (正式写手)
- 应助: 0 (幼儿园)
- 金币: 3912.1
- 红花: 3
- 帖子: 315
- 在线: 146.9小时
- 虫号: 406565
- 注册: 2007-06-19
- 性别: GG
- 专业: 能源化工
3楼2009-03-02 08:21:18
给一段Ullmann上的参考资料
★ ★ ★
zhangwengui330(金币+3,VIP+0):多谢补充! 3-2 11:35
zhangwengui330(金币+3,VIP+0):多谢补充! 3-2 11:35
|
3. Nickel Tetracarbonyl Nickel tetracarbonyl [13463-39-3] , Ni (CO)4 , Mr 170.75, bp 42.2 °C, mp –19.3 °C, d 1.31, is a very toxic colorless liquid. It possesses a significant vapor pressure at ambient temperature (44 kPa at 20 °C; 65 kPa at 30 °C). Nickel tetracarbonyl is virtually insoluble in water, but soluble in many organic solvents. It does not react with dilute mineral acids. It is thermally unstable, decomposing to nickel and carbon monoxide. It burns in air with a luminous flame, giving nickel oxide and carbon dioxide, and forms explosive mixtures with air (3 – 34 vol % Ni (CO)4 ). The molecule is tetrahedral, with linear Ni–C–O bonds. The bonding consists of both a Ni–C -bond and bonding. Production . Nickel tetracarbonyl is formed by direct reaction of carbon monoxide and finely divided nickel at relatively low temperatures [8]: Ni(g) + 4 CO(g) ¾ Ni (CO)4(g) At atmospheric pressure, the maximum rate of formation of nickel tetracarbonyl is at 130 °C for pure nickel. The temperature at which the rate of formation is a maximum decreases in the presence of a catalyst such as sulfur, and increases with pressure. The reverse reaction begins above ca. 180 °C. This reversible reaction is the basis of the atmospheric-pressure Mond process and the INCO pressure process for the production of high-purity nickel pellet and powder ( Nickel - 6.3. Carbonyl Refining ). Nickel tetracarbonyl can also be prepared in solution by a variety of methods [9]. Users of nickel tetracarbonyl frequently produce their own supply, but it is commercially available in the United States. The conditions under which nickel tetracarbonyl is formed are important because of the possibility of corrosion or transfer of nickel within a system, and in view of its high toxicity. The mere coexistence of carbon monoxide and nickel in some form does not mean that nickel tetracarbonyl will form. Other criteria must be met: (1) a fully reduced nickel-containing surface, (2) a reducing gas containing carbon monoxide, (3) the formation must be thermodynamically possible, which generally means low temperature (ambient to 150 °C) and high carbon monoxide partial pressures. In addition, the presence of a catalyst such as sulfur accelerates nickel tetracarbonyl formation. One situation where a significant amount of nickel tetracarbonyl can form is from a finely divided reduced nickel catalyst and carbon monoxide at low temperature. This is well known to users of nickel catalysts, and such conditions are avoided. Other than this, it is rare that significant amounts of nickel tetracarbonyl are formed. Environmentally, precautions preventing contamination of the workplace by the carbon monoxide will also prevent contamination by any nickel tetracarbonyl. The presence of nickel tetracarbonyl has been suggested but not demonstrated in cigarette smoke and in gases from the combustion of fossil fuels containing nickel. Attempts to detect it in welding fume failed [10]. Uses . Apart from being an intermediate in the carbonyl refining of nickel, nickel tetracarbonyl can be thermally decomposed to nickel plate other materials, for example, in mold production or in a fluidized bed. It is also used as a carbonylating agent or catalyst in organic chemistry. Analysis . Nickel tetracarbonyl can be analyzed by decomposition and conventional analysis of the nickel, by gas chromatography, UV or IR spectroscopy. There is a highly sensitive method based on the chemiluminescent reaction of nickel tetracarbonyl with ozone [11]. Commercial instruments based on infrared or chemiluminescent analysis are available. Reactions of Nickel Tetracarbonyl Nickel tetracarbonyl undergoes oxidation, reduction, and substitution reactions [12] , [13]. These are normally carried out in organic solvents below ca. 50 °C to prevent thermal decomposition of the nickel tetracarbonyl. Reaction with various oxidizing agents gives Ni (II) compounds. Concentrated nitric acid gives nickel nitrate. Solutions of nickel tetracarbonyl in organic solvents are oxidized by air to basic nickel carbonate and by halogens to the corresponding nickel dihalide. Decomposition of nickel tetracarbonyl with bromine water is useful as a means of disposal or for analysis. Reduction reactions, generally with alkali metals, give polynuclear anions formulated as [ Ni2(CO)6]2– , [ Ni3(CO)8]2– , [ Ni4(CO)9]2– , [ Ni5(CO)9]2– , and [ Ni6(CO)12]2–. Reduction of nickel tetracarbonyl by alkali metals in liquid ammonia gives a carbonyl hydride [NiH(CO)3]2 , isolated as a tetra-ammoniate. Interest in substitution compounds of nickel tetracarbonyl blossomed following the publication in 1948 of work by REPPE and coworkers showing that an effective class of catalysts for the trimerization of acetylene compounds could be formed by substituting CO groups in Ni (CO)4 by donor ligands such as triphenylphosphine. Thousands of substitution compounds of nickel tetracarbonyl have now been prepared. Most are with ligands containing the group 15 elements phosphorus, arsenic, or antimony as electron donor, but carbon, nitrogen, and unsaturated organic molecules can also serve as ligands. Some of the simpler substitution compounds with phosphorus ligands are Ni (CO)n(PX3 )4–n , n = 0 – 3, X = H, F, Cl, CH3 , C2H5 , C6H5 (substituted phosphines) and X = OCH3 , OC2H5 , OC6H5 (phosphites). The degree of substitution is controlled by steric and electronic effects. For example, with PF3 and P(C6H5 )3 , only mono- and disubstituted compounds are formed, whereas with PCl3 and P(OC6H5 )3 the carbon monoxide molecules can be completely replaced. The tetrakis(ligand) compounds Ni (PF3 )4 and Ni [P(C6H5 )3]4 can be prepared by other means. Substitution by chelating ligands is also possible, e.g., (CO)2NiL and NiL2 , where L = o-C6H4-[P(C2H5 )2]2. Fewer substitution compounds based on arsenic and antimony have been prepared. Examples include Ni (CO)3AsX3 (X = CH3 , C2H5, C6H5 , OCH3, OC2H5 , OC6H5 ) and Ni (CO)3SbX3 (X = Cl, C2H5 , C6H5 , OC6H5). [8] Y. Monteil, P. Raffin, J. Bouix, Thermochim. Acta 125 (1988) 327 – 346. [9] F. Boix et al., Synth. Commun. 17 (1987) 1149 – 1153. [10] L. G. Wiseman, Weld. J. (Miami) 68 (1989) 192 – 197. [11] P. M. Houpt, A. Van der Waal, F. Langeweg, Anal. Chim. Acta. 136 (1982) 421 – 424. [12] P. W. Jolly, G. Wilke: The Organic Chemistry of Nickel, vol. 1, Academic Press, New York 1974. [13] P. W. Jolly in G. Wilkinson, F. G. A. Stone, E. W. Abel (eds.): Comprehensive Organometallic Chemistry, vol. 6, Pergamon Press, Oxford 1982, pp. 1 – 36. |
4楼2009-03-02 10:16:59













回复此楼