| 查看: 277 | 回复: 2 | |||
| 【奖励】 本帖被评价1次,作者虫客增加金币 1 个 | |||
| 当前主题已经存档。 | |||
[资源]
【SSSC-76】Fluid Catalytic Cracking: Science and Technology
|
|||
|
Fluid Catalytic Cracking: Science and Technology By John S. Magee, Maurice M., Jr. Mitchell (July 1, 1993) Publisher: Elsevier Publishing Company Number Of Pages: 624 ISBN-10 / ASIN: 0444890378 ISBN-13 / EAN: 9780444890375 Preface According to the table of contents, Fluid Catalytic Cracking: Science & Technology, is concerned with fifteen different, though related, topics. While this is true, the reader is encouraged to consider the primary focus of the book as a whole to be on performance--performance of the catalyst, of its surface, of the FCC unit, of the feedstocks employed, of the analytical methods used to characterize the catalysts, and of environmentally directed regulations that govern the production of transportation fuels from petroleum. The authors and the editors have tried to produce a volume that will fill the need for a comprehensive survey of this major field of petroleum processing while maintaining a high level of thoughtful brevity. Thoughtful brevity is one of those things that is difficult to define, but anyone who has sat through a thirty-minute sermon or read a 100 page final report knows what it is. The subject matter of the book is intended to deal with several important performance issues: What does the catalyst itself do as a function of its chemical and physical composition? How does molecular structure influence performance? How7 do metal contaminants influence performance? How does the FCC unit itself influence performance? How will environmental legislation influence the way the overall catalyst and cracking unit system must perform? The emphasis on catalyst performance, particularly commercial performance, essentially dictated that the chapter authors be experienced industrial catalytic chemists and engineers. However, each author approached the task with a clearcut obligation to connect the roots of the science of FCC catalysis with the technology. In the case of FCC catalysis, the basic foundation was formed from virtually equal parts of pure science and practical technology, with an enormous sense of urgency caused by the transportation fuel needs of World War 11. Pure research in FCC catalysis was not neglected, and the pioneering work of Eugene Houdry, Paul Emmett, and Paul Weiss, to name but a few, broadened the base on which the industry was built. Evolutionary changes were followed by the revolution of zeolite-containing FCC catalysts. For this we all owe a debt to Charles Plank and Edward Rosinski. The editors have chosen to document the revolution to date with fifteen chapters of FCC science and technology. As stated before, each author was charged with the task of documenting FCC catalyst performance from the standpoint of both the science and the technology involved in performance. We feel that performance is so important that we have included two chapters and part of a third on catalyst evaluation. Each offers a somewhat different viewpoint on how catalyst performance should be evaluated in the laboratory. In our opinion all three offer enough value to be considered equally by any serious worker striving to understand how a catalyst can be made to perform in the laboratory in a manner predictive of its commercial operation. It is also very clear today that the environmental impact of the use of fossil fuels in the transportation sector can have a profound effect on FCC catalysis. Superficially, there seems little connection to the actual science of FCC catalysis, but, as an example, an entire supporting industry has grown based on the catalytic oxidation of CO to C02 and the catalytic elimination of oxides of sulfur and nitrogen from stack gases from the FCC unit regenerator. Two chapters deal with the relationship of FCC catalysis and the real world of cars, planes, and plastics: Chapter 11 on FCC unit design and operational control, and Chapter 12 on the influences of the structural formula of the hydrocarbon being cracked and cracked-product molecular structure. The science of FCC catalysis is amply treated in Chapters 2,3,5, and 6. Here the nature of catalytic sites, their influence on catalyst performance, the structure and complexity involved with the zeolite component of the catalyst, and the instrumental techniques involved in surface and structural analysis are described. As is always the case, and justly so, we would add that the editors are pleased to acknowledge the many people who contributed time, effort, and above all, thought, to this project: The authors--in reality the book is theirs. The publishers-their approach to the hundreds of small and large problems in putting these pages between covers was always both professional and understanding. The critics--our wives, Niki and Marilyn, who encouraged us to complete the project; Dr. G. M. Woltermann, who critically read the text; and Drs. Anonymous, the authors’ peers, who reviewed all of the chapters. These latter catalyst professionals know who they are and rightly deserve the high esteem in which they are held by J.S.M. and M.M.M., Jr. John S. Magee Ellicott City, Maryland Maurice M. Mitchell, Jr. Ashland, Kentucky 本帖内容来自www.chemj.cn,欢迎访问原帖!本贴地址:http://www.chemj.cn/viewthread.php?tid=8312 |
» 猜你喜欢
浙江师范大学国家杰青杨启华教授团队招收2026年博士研究生
已经有34人回复
南通大学电气与自动化学院2026年优秀博士招聘公告
已经有0人回复
专业论文润色/翻译怎么收费?
已经有167人回复
国家级人才课题组招收2026年入学博士
已经有2人回复
乙酰化透明质酸钠的改性实验求助
已经有0人回复
【陕西师范大学】催化化学方向招收2026年博士研究生1名(申请-考核)
已经有4人回复
中国水产科学研究院黄海水产研究所博士后科研工作站2026年博士后招收公告
已经有0人回复
大连海事大学国家级人才团队2026年博士研究生招生启事(氢能)
已经有10人回复
国家级人才课题组招收2026年入学博士
已经有5人回复
意大利米兰理工大学急聘CSC公派留学博士生(物理或无机材料科学方向)
已经有28人回复
2楼2009-02-28 16:23:45
简单回复
fox-fox3楼
2009-03-09 00:49
回复















回复此楼