| 查看: 823 | 回复: 19 | ||
| 【奖励】 本帖被评价17次,作者a410731466增加金币 16 个 | ||
| 当前主题已经存档。 | ||
[资源]
CATALYST SEPARATION, RECOVERY AND RECYCLING
|
||
|
CATALYST SEPARATION, RECOVERY AND RECYCLING ROBERT P. TOOZE Fife, Scotland Edited by Fife, Scotland and EaStCHEM, School of Chemistry, University of St. Andrews,S t. Andrews, DAVID J. COLE-HAMILTON CATALYST SEPAR P P A R R TION, RECOVE A A RY R R Sasol Technology (UK) Ltd., St. Andrews, Chemistry and Process Design CHAPTER 1 HOMOGENEOUS CATALYSIS – ADVANTAGES AND PROBLEMS 1.1 Catalysis 1.2 Catalyst Stability 1.2.1 THERMALLY INDUCED DECOMPOSITION 1.2.2 CHEMICALLY INDUCED DECOMPOSITION 1.2.3 PHYSICAL LOSS FROM THE PROCESS 1.3 Layout of the Book 1.4 References CHAPTER 2 CLASSICAL HOMOGENEOUS CATALYST SEPARATION TECHNOLOGY 2.1.1 Coverage of Chapter 2.2 General Process Considerations 2.3 Everything is a Reactor 2.4 Overview of Separation Technologies 2.4.1 TRADITIONAL COBALT WITH CATALYST DECOMPOSITION 2.4.2 UNION CARBIDE-DAVY GAS RECYCLE PROCESS. 2.4.3 LIQUID RECYCLE 2.4.4 BIPHASIC SYSTEMS; WATER-ORGANIC 2.4.5 INDUCED PHASE SEPARATION 2.4.6 NON-AQUEOUS PHASE SEPARATION 2.4.6.1 NAPS Using a Non-Polar Catalyst 2.4.6.2 NAPS Using a Polar Catalyst 2.4.6.3 Ligand Structure and Solubility Properties 2.5 Hypothetical processes - How Might the Product be Separated from the Catalyst 2.5.1 PROPENE HYDROFORMYLATION 2.5.2 1-OCTENE HYDROFORMYLATION 2.5.3 ALLYL ALCOHOL 2.5.4 METHOXYVINYLNAPHTHALENE 2.5.5 SEPARATION TECHNOLOGY FOR LESS STABLE CATALYSTS 2.5.5.1 Mitsubishi TPPO/TPP Separation 2.5.5.2 Organic Polymer for Catalyst Stabilization 2.6 Real-World Complications 2.6.1 ORGANOPHOSPHORUS LIGAND DEGRADATIONS 2.6.1.1 Oxidation 2.6.1.2 Alkyldiarylphosphine Formation 2.6.1.3 Ligand Scrambling 2.6.1.4 Phosphine Reactions with Conjugated Systems 2.6.1.5 Phosphite Oxidation 2.6.1.6 Simple Phosphite Hydrolysis 2.6.1.7 Poisoning Phosphite Formation 2.6.1.8 Aldehyde Acid Formation 2.6.1.9 Acidity Control 2.6.2 SEPARATING BYPRODUCTS FROM REACTANTS OR PRODUCTS 2.6.2.1 Alkene Hydrogenation 2.6.2.2Alkene Isomerization 2.6.2.3 Aldehyde Dimerization and Trimerization 2.6.2.4 Formation of Conjugated Carbonyls 2.6.3 INTRINSIC CATALYST DEACTIVATION 2.7 Further Separation Challenges 2.7.1 RECOVERY OF METAL VALUES FROM A SPENT CATALYST 2.7.1.1 Catalyst Containment and Capture Technologies 2.8 Concluding Remarks 2.9 References CHAPTER 3 SUPPORTED CATALYSTS Immobilisation of Tailor-made Homogeneous Catalysts 3.1 Introduction 3.2 Short Historical Overview 3.3 Polystyrene Supported Catalysts 3.4 Silica Supported Catalyst 3.5 Catalysis in Interphases 3.6 Ordered Mesoporous Support 3.7 Non-covalently Supported Catalysts 3.8 Supported Aqueous Phase Catalysis 3.9 Process Design [71] 3.10 Concluding Remarks 3.11 References CHAPTER 4 SEPARATION BY SIZE-EXCLUSION FILTRATION Homogeneous Catalysts Applied in Membrane Reactors 4.1 Introduction 4.2 Reactors 4.2.1 DEAD-END FILTRATION REACTORS 4.2.2 CROSS-FLOW FILTRATION REACTORS 4.3 Membranes 4.3.1 CLASSIFICATION OF FILTRATION TYPES 4.4 Dendrimer Supported Catalysts 4.4.1 KHARASCH ADDITION REACTION 4.4.2 ALLYLIC SUBSTITUTION REACTIONS 4.4.3 HYDROVINYLATION REACTION 4.4.4 HYDROGENATION 4.4.5 MICHAEL ADDITION REACTION 4.5 Dendritic Effects 4.6 Unmodified or Non-dendritic Catalysts 4.6.1 HYDROGENATION 4.6.2 PHASE TRANSFER CATALYSIS 4.7 Soluble Polymer Supported Catalysts 4.8 Concluding Remarks 4.9 References CHAPTER 5 BIPHASIC SYSTEMS: WATER – ORGANIC 4.3.2 MEMBRANE MATERIALS 5.2.1 GENERAL 5.2.2 BIPHASIC SYSTEMS 5.2.3 AQUEOUS BIPHASIC CATALYSIS 5.2.3.2 Aqueous-phase Catalysis as a Unit Operation 5.2.4 EXAMPLES OF AQUEOUS BIPHASIC CATALYSIS 5.2.4.1 Hydroformylation (Ruhrchemie/Rhône-Poulenc[RCH/RP] process 5.2.4.2 Other Industrially Used Aqueous-biphasic Processes 5.2.4.3 Short Overview of Other Reaction 5.2.5 OTHER PROPOSALS FOR WATER - BIPHASIC SYSTEMS 5.2.6 INTERLUDE - BIPHASIC SYSTEMS: ORGANIC-ORGANIC 5.3 Recycle and Recovery of Aqueous Catalysts 5.3.1 RECYCLING 5.3.2 RECOVERY 5.3.3 ECONOMICS OF THE PROCESS 5.3.4 ENVIRONMENTAL ASPECTS 5.4 Concluding Remarks 5.5 References 5.1 Introduction 5.2.3.1 Water as a Solvent 5.2 Immobilization with the Help of Liquid Supports CHAPTER 6 FLUOROUS BIPHASIC CATALYSIS 6.1 Introduction 6.2 Alkene Hydrogenation 6.3 Alkene Hydrosilation 6.4 Alkene Hydroboration 6.5 Alkene Hydroformylation 6.6 Alkene Epoxidation 6.7 Other Oxidation Reactions 6.8 Allylic Alkylation 6.9 Heck, Stille, Suzuki , Sonagashira and Related Coupling Reactions 6.10 Asymmetric Alkylation of Aldehydes 6.11 Miscellaneous Catalytic Reactions 6.12 Fluorous Catalysis Without Fluorous Solvents 6.13 Continuous Processing 6.14 Process Synthesis for the Fluorous Biphasic Hydroformylation of 1-Octene 6.15 Conclusions 6.16 Acknowledgement 6.17 References CHAPTER 7 CATALYST RECYCLING USING IONIC LIQUIDS 7.1 Introduction 7.1.1 INTRODUCTION TO IONIC LIQUIDS 7.1.2 INTRODUCTION TO TRANSITION METAL CATALYSIS IN IONIC LIQUIDS 7.1.3 MULTIPHASIC CATALYSIS WITH IONIC LIQUIDS – ENGINEERING ASPECTS 7.2 Liquid-liquid Biphasic, Rh-catalysed Hydroformylation Using Ionic Liquids 7.3 Rhodium Catalysed Hydroformylation Using Supported Ionic Liquid Phase SILP) Catalysis 7.3.1 SUPPORTED IONIC LIQUIDS BY CHEMICAL BONDS 7.3.2 SUPPORTED IONIC LIQUIDS BY IMPREGNATION 7.4 Costs And Economics 7.5 Conclusions 7.6 References CHAPTER 8 SUPERCRITICAL FLUIDS Compressed Gases as Mobile Phase and Catalyst Support 8.1 Introduction to supercritical fluids 8.2 Applications of scCO2 in Catalyst Immobilisation 8.2.1 CO2 AS THE ONLY MASS SEPARATING AGENT 8.2.2 BIPHASIC SYSTEMS CONSISTING OF CO2 AND LIQUID PHASES ...223 8.2.2.1 Water as the Liquid Phase 8.2.2.2 Poly(ethyleneglycol) (PEG) as the Liquid Phase 8.2.2.3 Ionic Liquids as the Liquid Phase 8.2.3 BIPHASIC SYSTEMS CONSISTING OF CO2 AND SOLID PHASES 230 8.2.3.1 Inorganic Supports 8.2.3.2 Organic Polymer Supports 8.4 Summary 8.5 References CHAPTER 9 AREAS FOR FURTHER RESEARCH 9.1 Introduction 9.2 Conventional Separation Methods (See Chapter 2 9.3 Catalysts on Insoluble Supports (Chapter 3) 9.4 Catalysts on Soluble Supports (Chapter 4 9.5 Aqueous Biphasic Catalysis (Chapter 5) 9.6 Fluorous Biphasic Catalysis (Chapter 6) 9.7 Reactions Involving Ionic Liquids (Chaoter 7 9.8 Reactions Using Supercritical Fluids (Chapter 8 9.9 Conclusions 9.10 References 8.3 Economic Evaluation and Summary 8.3.1 POTENTIAL FOR SCALE-UP http://www.namipan.com/d/83eced65f9dad053e728a7621711a43fa2107035e5ab5800 |
» 猜你喜欢
乙酰化透明质酸钠的改性实验求助
已经有0人回复
【陕西师范大学】催化化学方向招收2026年博士研究生1名(申请-考核)
已经有4人回复
物理化学论文润色/翻译怎么收费?
已经有239人回复
中国水产科学研究院黄海水产研究所博士后科研工作站2026年博士后招收公告
已经有0人回复
大连海事大学国家级人才团队2026年博士研究生招生启事(氢能)
已经有10人回复
国家级人才课题组招收2026年入学博士
已经有6人回复
意大利米兰理工大学急聘CSC公派留学博士生(物理或无机材料科学方向)
已经有41人回复
求加氢处理工艺与工程(第二版)pdf 李大东 中国石化出版社 9787511436689
已经有0人回复
新加坡ASTAR招收CSC或学校资助联培博士生/访问学生
已经有1人回复
求助Amsterdam Density Functional
已经有0人回复
公派出国有好的选择吗?
已经有0人回复
8楼2009-02-19 08:35:39
10楼2009-02-19 08:54:09
11楼2009-02-19 09:50:27
13楼2009-02-19 16:49:17
17楼2009-02-22 12:57:44
19楼2009-03-07 10:54:08
简单回复
zyhou2楼
2009-02-17 20:45
回复


2009-02-17 22:59
回复




liang494楼
2009-02-18 08:40
回复
谢谢分享!
QWD5楼
2009-02-18 19:41
回复

2009-02-18 19:52
回复


ryfallen7楼
2009-02-19 08:12
回复



sosolala9楼
2009-02-19 08:45
回复





lingliaopiao12楼
2009-02-19 10:30
回复

kwang78814楼
2009-02-21 17:16
回复
支持下!!!
kwang78815楼
2009-02-21 17:16
回复
支持下!!!
2009-02-21 18:45
回复
daniel58218楼
2009-03-02 15:18
回复


arielroy20楼
2009-03-08 08:28
回复















回复此楼