24小时热门版块排行榜    

CyRhmU.jpeg
查看: 11727  |  回复: 246
【奖励】 本帖被评价119次,作者zcch增加金币 92.5
当前主题已经存档。
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

zcch

至尊木虫 (职业作家)


[资源] 发光书本一部-2008,欢迎评价!

下载后吱一声,俺就谢谢了!
2009.4.12更新连接,欢迎评价!

由于多人下载后不顶贴,楼主决定将连接放在帖子中,只有认真看完帖子,才能找到链接![

作者:Cees Ronda
出版商:weily     2008年(2008 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim)
内容如下:
Contents
Foreword V
Preface XIII
List of Contributors XV
1 Emission and Excitation Mechanisms of Phosphors 1
Cees R. Ronda
1.1 Introduction 1
1.2 General Considerations – Fluorescent Lamps 1
1.3 General Considerations – Cathode Ray Tubes 2
1.4 Luminescence Mechanisms 3
1.4.1 Center Luminescence 4
1.4.2 Charge Transfer Luminescence 8
1.4.3 Donor Acceptor Pair Luminescence 8
1.4.4 Long Afterglow Phosphors 11
1.5 Excitation Mechanisms 12
1.5.1 Optical Excitation of Luminescence and Energy Transfer 12
1.6 Energy Transfer Mechanisms between Optical Centers 14
1.6.1 Mechanisms Underlying Energy Transfer 14
1.6.2 Energy Transfer Governed by Electrostatic Interaction 15
1.6.3 Energy Transfer by Higher-order Coulomb Interaction 18
1.6.4 Energy Transfer Governed by Exchange Interactions 19
1.6.5 Cross-relaxation and Energy Transfer 19
1.6.6 Practical Implications 20
1.7 Excitation with High-energy Particles 21
1.8 Electroluminescence (EL) 24
1.8.1 High-voltage Electroluminescence 24
1.8.2 Low-voltage Electroluminescence 26
1.9 Factors Determining the Emission Color 27
1.10 Energy Efficiency Considerations of Important Luminescent
Devices 29
1.11 Luminescence Quantum Yield and Quenching Processes 29
1.11.1 The Energy does not Reach the Luminescent Ion 31
1.11.2 The Absorbed Energy Reaches the Luminescent Ion but there are
Nonradiative Channels to the Ground State 31
1.11.3 The Luminescence Generated is Absorbed by the Luminescent
Material 33
1.12 Acknowledgement 34
2 Quantum Dots and Nanophosphors 35
Cees R. Ronda and Thomas Ju¨stel
2.1 Introduction 35
2.1.1 Optical Properties of Quantum Dots 35
2.1.2 Particle in a One-dimensional Potential Well 36
2.1.3 Particle in Three-dimensional Potentials 40
2.1.3.1 Particle in a General Three-dimensional Potential 40
2.1.3.2 Electron in a Coulomb Potential 41
2.1.3.3 The Hydrogen Atom 42
2.2 Density of States in Low-dimensional Structures 43
2.3 Electrons, Holes, and Excitons 45
2.4 Low-dimensional Structures 46
2.4.1 The Weak Confinement Regime 46
2.4.2 The Strong Confinement Regime 47
2.5 Quantum Confinement in Action 49
2.6 Photoluminescence of Quantum Dots Prepared by Wet-chemical
Precipitation 52
2.7 Photoluminescence from Doped Quantum Dots 53
2.8 Luminescence of Nano Particles of Rare-Earth Phosphors 55
2.9 Nanoscale Particles for Molecular Imaging 56
2.10 Conclusions 58
2.11 Acknowledgements 58
3 Phosphors for Plasma Display Panels 61
Thomas Ju¨stel
3.1 Introduction 61
3.2 Principle of Operation of Plasma Display Panels 61
3.3 Performance of Applied Phosphors in PDPs 65
3.3.1 Phosphor Efficiency 66
3.3.2 Electronic Transitions Involved in Europium Luminescence 68
3.3.3 Color point and efficiency of the red phosphors 68
3.3.4 Stability and Color Point of BaMgAl10O17:Eu 70
3.4 Summary and Prospects 72
4 Quantum-Splitting Systems 75
Alok M. Srivastava and Cees R. Ronda
4.1 Introduction 75
4.2 Quantum-splitting Phosphors Based on Pr3þ
-activated Fluoride
Materials 76
4.3 Quantum-splitting Phosphors Based on Pr3þ
-activated
Oxide Materials 82
4.3.1 SrAl12O19: Pr3þ 83
4.3.1.1 LaMgB5O10 and LaB3O6 Doped with Pr3þ 85
4.4 The Quantum Efficiency of the Quantum-splitting Process 88
4.5 Limitations of Pr3þ
-based Quantum-splitting Phosphors 91
4.6 Quantum-splitting Phosphors Based on Gd3þ
and Rare Earth
Ion-Activated Fluoride Materials 92
4.6.1 The Electronic Energy Level Structure of the Gd3þ
Ion 92
4.6.2 Quantum Splitting in the Gd3þ
-Eu3þ
System 94
4.6.3 Quantum Splitting in the Er3þ
-Gd3þ
-Tb3þ
System 97
4.7 Multiphoton Emission through High-energy Excitation 98
4.8 Applications of Quantum-splitting Phosphors 99
4.9 Conclusions 100
4.10 Acknowledgements 101
5 Scintillators 105
Cees R. Ronda and Alok M. Srivastava
5.1 Introduction 105
5.2 Positron Emission Tomography and Computed Tomography 106
5.2.1 Physical Principles of Positron Emission Tomography (PET) 106
5.2.2 Computed Tomography (CT) 107
5.3 General Requirements for Scintillating Materials used in
Medical Imaging 107
5.4 Scintillators for Pet Application 112
5.4.1 General Description of Phosphors for PET Scintillators 112
5.4.2 Scintillating Composition Used in PET 114
5.4.2.1 Bi4Ge3O12 (BGO) 115
5.4.2.2 NaI:Tl
þ 116
5.4.2.3 Lu2SiO5:Ce3þ
(LSO) 116
5.4.2.4 Lu2Si2O7:Ce (Lutetium Pyrosilicate, LPS) 117
5.4.2.5 LaBr3:Ce 118
5.4.2.6 LuI3:Ce 119
5.4.3 Other PET Scintillators 119
5.5 Scintillators for CT Application 120
5.5.1 General Description of Scintillators for CT 120
5.5.2 Scintillating Compositions Used in CT 120
5.5.2.1 CdWO4 120
5.5.2.2 (Y,Gd)2O3:Eu3þ 121
5.5.2.3 Gd2O2Sr3þ
(GOS) 122
5.6 X-ray Intensifying Screens 123
5.6.1 General Description of Scintillators for Intensifying Screens 123
5.6.2 Phosphor Compositions for Use in X-ray Intensifying Screens 123
5.7 FDXD Detectors 124
5.8 Storage Phosphors 124
5.8.1 General Description of Storage Phosphors 124
5.9 Semiconductor Scintillators 127
6 Upconversion Phosphors 133
J. Freek Suijver
6.1 Introduction 133
6.2 Theory of Upconversion 137
6.2.1 Absorption and Excitation Spectroscopy 139
6.2.2 Time Evolution of UC Emission 143
6.2.3 Power Dependence of Upconversion 146
6.2.4 Photon Avalanche Effects in Upconversion 150
6.2.5 Determination of the Upconversion Efficiency 153
6.3 Examples 154
6.3.1 Rare Earth Upconverters 155
6.3.2 Transition Metal Upconverters 162
6.3.3 Mixed Rare Earth/Transition Metal Upconverters 165
6.3.4 Organic Upconverters 169
6.3.5 Nanocrystalline Upconverters 171
6.4 Conclusions and Outlook 175
6.5 Acknowledgements 176
7 Luminescent Materials for Phosphor–Converted LEDs 179
Thomas Ju¨stel
7.1 Inorganic Light-Emitting Diodes (LEDs) 179
7.2 White and Colored LEDs 180
7.3 Phosphor-Converted LEDs 183
7.4 Future Trends 188
8 Organic Electroluminescence 191
Joseph J. Shiang and Anil R. Duggal
8.1 Introduction 191
8.2 OLED Fundamentals 192
8.3 Key OLED Trends and Innovations 197
8.3.1 Electroluminescence from Vapor-deposited Organic Films 197
8.3.2 Electroluminescence from Solution-Deposited Organic Films 202
8.4 Prospects for General Illumination 207
8.4.1 A First OLED Lighting Demonstration 208
8.4.1.1 Downconversion for White Light Generation 209
8.4.1.2 Scattering for Outcoupling Efficiency Enhancement 210
8.4.1.3 A Scalable Monolithic Series Architecture 211
8.4.2 Efficiency Challenge for General Illumination 212
8.5 Conclusions 213
8.6 Acknowledgements 214
9 Experimental Techniques 219
Peter Vergeer
9.1 Introduction 219
9.2 Energy of Optical Transitions: Absorption, Excitation, and Emission
Spectroscopy 220
9.2.1 Broadband Light Sources 223
9.2.2 Dispersing Elements 224
9.2.2.1 Gratings 224
9.2.2.2 Interferometers 227
9.2.3 Detectors 229
9.3 The Transition Dipole Moment: Absorption Strengths and
Luminescence Lifetimes 233
9.3.1 Lasers 235
9.3.2 Luminescence Lifetimes 237
9.4 Quantum Efficiency and Nonradiative Relaxation 238
9.5 Homogeneous Broadening and Dephasing 240
9.6 Detection of Luminescence from Individual Optical Centers 244
9.7 Acknowledgement 248
Index 251

[ Last edited by zcch on 2009-5-19 at 21:44 ]
回复此楼
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

张华杰

木虫 (正式写手)


★★★★★ 五星级,优秀推荐

谢谢了!
34楼2008-12-11 00:09:42
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 zcch 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见