| 查看: 1231 | 回复: 14 | |||||||
| 【奖励】 本帖被评价14次,作者pkusiyuan增加金币 11.2 个 | |||||||
[资源]
Compact Stars Nuclear Physics, Particle Physics and General Relativity
|
|||||||
|
Contents Preface vii 1 Introduction 1 2 4 5 1.1 Compact Stars . . . . . . . . . . . . . . . 1.2 Compact Stars and Relativistic Physics . 1.3 Compact Stars and Dense-Matter Physics 2 General Relativity 2.1 Lorentz Invariance ...... . 2.1.1 Lorentz transformations 7 8 8 2.1.2 Covariant vectors. . . . 10 2.1.3 Energy-momentum tensor of a perfect fluid 12 2.1.4 Light cone. . . . . . . . . . . . . . . . . . . 12 2.2 Scalars, Vectors, and Tensors in Curvilinear Coordinates 13 2.3 Principle of Equivalence of Inertia and Gravitation 18 2.3.1 Photon in a gravitational field 20 2.3.2 Tidal gravity . . . . . . . . . . . . 21 2.3.3 Curvature of spacetime ...... 21 2.3.4 Energy conservation and curvature 22 2.4 Gravity .. . . . . . . . . . . . . . . . . . 23 2.4.1 Mathematical definition of local Lorentz frames 26 2.4.2 Geodesics.............. 26 2.4.3 Comparison with Newton's gravity 29 2.5 Covariance ................ 30 2.5.1 Principle of General Covariance. . 30 2.5.2 Covariant Differentiation ..... 30 2.5.3 Geodesic equation from covariance principle. 31 2.5.4 Covariant divergence and conserved quantities 33 2.6 Riemann Curvature Tensor . . . . . . . . . . . . . . . 36 2.6.1 Second covariant derivative of scalars and vectors. 36 2.6.2 Symmetries of the Riemann tensor . . 36 2.6.3 Test for flatness. . . . . . . . . . . . . 37 2.6.4 Second covariant derivative of tensors 37 x Contents 2.6.5 Bianchi identities. 2.6.6 Einstein tensor .. 2.7 Einstein's Field Equations 2.8 Relativistic Stars . . . . . 2.8.1 Metric in static isotropic spacetime. 2.8.2 The Schwarzschild solution ... . . 2.8.3 Riemann tensor outside a Schwarzschild star 2.8.4 Energy-Momentum tensor of matter .. . 2.8.5 The Oppenheimer-Volkoff equations .. . 2.8.6 Gravitational collapse and limiting mass . 2.9 Action Principle in Gravity ........... . 3 Compact Stars: 38 39 40 42 42 44 45 46 47 51 52 From Dwarfs to Black Holes 55 3.1 Birth and Death of Stars. . . . . . . . . . . 55 3.2 Objective . . . . . . . . . . . . . . . . . . . 61 3.3 Gravitational Units and Neutron Star Size. 62 3.4 Partial Decoupling of Matter from Gravity. 66 3.5 Equations of Relativistic Stellar Structure 67 3.6 Electrical Neutrality of Stars ...... 71 3.7 "Constancy" of the Chemical Potential. . 72 3.8 Gravitational Redshift . . . . . . . . . . . 73 3.8.1 Integrity of an atom in strong fields 73 3.8.2 Redshift in a general static field .. 75 3.8.3 Comparison of emitted and received light 78 3.8.4 Measurements of M / R from redshift 79 3.9 White Dwarfs and Neutron Stars . . . . . . . . . 79 3.9.1 Overview . . . . . . . . . . . . . . . . . . 79 3.9.2 Fermi-Gas equation of state for nucleons and electrons 81 3.9.3 High- and low-density limits. . . . . . . 86 3.9.4 Poly tropes and Newtonian white dwarfs 87 3.9.5 Stability.................. 91 3.9.6 Nonrelativistic electron region. . . . . . 93 3.9.7 Relativistic electron region: asymptotic white dwarf mass. . . . . . . . . . . . . . . . . . . . . . . . . .. 94 3.9.8 Nature of limiting mass of dwarfs and neutron stars 96 3.9.9 Degenerate ideal gas neutron star. . 98 3.10 Improvements in White Dwarf Models . . . 99 3.10.1 Nature of matter at dwarf densities. 99 3.10.2 Carbon and oxygen white dwarfs . . 102 3.11 Stellar Sequences from White Dwarfs to Neutron Stars. 105 3.12 Star of Uniform Density . . . . . . . . . . . 107 3.13 Baryon Number of a Star . . . . . . . . . . 110 3.14 Bound on Maximum Mass of Neutron Stars 112 3.15 Beyond Maximum-Mass Neutron Stars. . . 116 Contents xi 3.16 Black Holes. . . . . . . . . . . . . . 117 3.16.1 Interior and Exterior Regions 117 3.16.2 No statics within . . 120 3.16.3 Black hole densities .... 122 4 Relativistic Nuclear Field Theory 124 4.1 Motivation ............. 124 4.2 Lagrange Formalism . . . . . . . . 129 4.3 Symmetries and Conservation Laws. 130 4.3.1 Internal global symmetries. 131 4.3.2 Spacetime symmetries . . . . 132 4.4 Boson and Fermion Fields . ... . . . 135 4.4.1 Uncharged and charged scalar fields 135 4.4.2 Uncharged and charged vector fields 136 4.4.3 Dirac fields . . . . . . 138 4.4.4 Neutron and proton . 140 4.4.5 Electromagnetic field . 142 4.5 Properties of Nuclear Matter 143 4.6 The (j - w Model. . . . . . . 147 4.7 Stationarity of Energy Density 156 4.8 Model with Scalar Self-Interactions. 156 4.8.1 Algebraic determination of the coupling constants 158 4.8.2 Symmetric nuclear matter equation of state 161 4.8.3 Negative self-interaction . 162 4.9 Introduction of Isospin Force .. 164 4.10 Inclusion of the Octet of Baryons 169 4.11 High-Density Limit. . . . . . . . 173 4.12 Effective vs. Renormalized Theory 173 4.13 Bound vs. Unbound Neutron Matter 175 4.13.1 Bound neutron matter . . . . 176 4.13.2 First-Order phase transition. 176 4.14 Note on Dimensions 178 4.15 Summary . . . . . . . . . . . . . . . 178 5 Neutron Stars 180 5.1 Introduction...................... 180 5.2 Pulsars: The Observational Basis of Neutron Stars 183 5.2.1 Important pulsar discoveries. . . . . 183 5.2.2 Pulsar periods ............ 186 5.2.3 Individual pulses and pulse profiles . 187 5.2.4 Detection biases ........... 189 5.2.5 Two populations of pulsars . . . . . 190 5.2.6 Supernova associations with pulsars 191 5.2.7 Why pulsars are neutron stars 193 5.2.8 Pulsar masses . . . . . . . . . . . . . 197 xii Contents 5.2.9 Pulsar ages . . . . . . . . . . . . 200 5.2.10 Evolution of the braking index 5 . 202 5.3 Theory of Neutron Stars. . . . . . . . . 206 5.3.1 Nuclear and neutron star matter: Similarities and dif- ferences . . . . . . . . . . . . . . . . . 206 5.3.2 Chemical equilibrium in a star . . . . 208 5.3.3 Hadronic composition of neutron stars 212 5.3.4 Neutron star matter . . . . . . . . . . 214 5.3.5 Hints for computation . . . . . . . . . 219 5.3.6 Isospin- and charge-favored baryon species. 221 5.3.7 Surface of neutron stars . . . . . . . . . 221 5.3.8 Reprise of white dwarfs to neutron stars 222 5.3.9 Development of neutron star sequences. 223 5.3.10 Mass as a function of central density. . 224 5.3.11 Radius-Mass characteristic relationship 225 5.4 Constitution of Neutron Stars. . . . . . . . . . 227 5.4.1 Limiting mass and the equation of state 227 5.4.2 Beta equilibrium and symmetry energy 228 5.4.3 Hyperon stars. . . . . . . . . . . . . . . 229 5.4.4 Limiting mass and hyperon populations 233 5.4.5 Compression modulus and effective nucleon mass 234 5.4.6 Pion and kaon condensation . . . . . . . . . 236 5.4.7 Charge neutrality achieved among baryons 240 5.5 Tables of Equations of State. 242 5.5.1 Low density. 242 5.5.2 High density 244 6 Rotating Neutron Stars 247 6.1 Motivation ................... 247 6.2 Dragging of Local Inertial Frames. . . . . . . 249 6.3 Interior Solution for the Dragging Frequency 253 6.4 Kepler Angular Velocity in General Relativity . 255 6.5 Effect of Frame Dragging on Kepler Frequency 258 6.6 Hartle-Thorne Perturbative Solution. . . . . . 260 6.6.1 Comparison of Perturbative and Numerical Solutions 261 6.7 Imprint of Angular Momentum . . . . . . . . . . 262 6.8 Rotating Stars with Realistic Equations of State 263 6.9 Effect of Rotation on Stellar Structure 264 6.10 Gravitational-Wave Instabilities. . . . . . . . . 265 7 Limiting Rotational Period of Neutron Stars 275 7.1 Motivation ........ 275 7.2 The Minimal Constraints ............ 277 7.3 Variational Ansatz . . . . . . . . . . . . . . . . 278 7.4 Limiting Value of Rotational Period as a Function of Mass. 279 7.5 7.6 7.7 7.8 Test of Sensitivity of Results ..... General Relativistic Limit on Rotation Discussion and Alternatives Summary Contents xiii 281 285 286 288 8 Quark Stars 289 289 289 290 291 292 293 295 301 8.1 Introduction ........... . 8.2 Quark Matter Equation of State 8.2.1 Zero Temperature .... 8.2.2 Massless quark approximation 8.2.3 First order in O:s • 8.3 Quark Star Matter . . . . . . . . . . . 8.4 Strange and Charm Stars . . . . . . . 8.5 Beyond White Dwarfs and Neutron Stars 9 Hybrid Stars 9.1 Introduction. 303 303 9.2 Constant-Pressure Phase Transition ............. 305 9.3 The Confined-Deconfined Phase Transition in Neutron Stars 308 9.3.1 Conservation laws are global-not local . . . 308 9.4 Degrees of Freedom in a Multicomponent System. . 309 9.4.1 Coulomb lattice structure of the mixed phase 313 9.4.2 Phase diagram . . . . . . 313 9.4.3 Two energy scales ............... 314 9.5 Gross Structure of a Hybrid Star . . . . . . . . . . . 315 9.5.1 Energy budget in the reapportionment of charge 317 9.6 Crystalline Structure . . . . . . . . . . . . . . . . . . . . 319 9.6.1 Crystalline structure as a function of stellar mass. 323 9.6.2 Possible implications for glitches . . . . . . . 325 9.7 Mechanism for Formation of Low-Mass Black Holes. 326 9.7.1 Hyperonization-Induced collapse 328 9.7.2 Deconfinement-Induced collapse. 329 9.7.3 Density profiles . . . . . . . . . . 330 9.7.4 Discussion............. 331 9.8 Tables of Equation of State for Hybrid Stars. 333 10 Strange Stars 337 10.1 The Strange Matter Hypothesis. . . . . . . . . . . . . .. 337 10.2 Compatibility of the Hypothesis with Present Knowledge 338 10.2.1 Energetic considerations . . . . . . . . . . . . . .. 338 10.2.2 The universe and its evolution ........... 339 10.2.3 Stability of nuclei against decay to strange matter 340 10.2.4 Stability of nuclei to conversion by strange nuggets 341 10.2.5 Terrestrial searches. . . . . . . . . . 341 10.2.6 Summary, prospects and challenges. . . . . . . .. 343 xiv Contents 10.3 Sub millisecond Pulsars . . . . . . . . . . 343 10.3.1 The fine-tuning problem. . . . . 343 10.3.2 Limits to neutron star rotation. 344 10.3.3 Implausibly high central densities 345 10.3.4 Strange stars as fast rotors . . . . 346 10.3.5 Out of the impasse. . . . . . . . . 347 10.3.6 Motivation for searches and prospects for discovery. 348 10.4 Structure of Strange Stars . . . . . . . . 348 10.5 Strange Stars to Strange Dwarfs ..... 350 10.5.1 Strange stars with nuclear crusts . 350 10.5.2 Strange dwarfs with nuclear crusts 355 10.5.3 Stability . . . . . . . . . . . . . . . 357 10.5.4 Possible new class of dense white dwarfs 360 10.6 Conclusion .............. . 361 Appendix A: Useful Astronomical Data 362 Books for Further Study 363 References 365 Index 383 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Compact_Stars_Nuclear_Physics,_Particle_Physics_and_General_Relativity_-_N._Glendenning,_Springer.pdf
2016-11-02 18:57:20, 9.47 M
» 收录本帖的淘帖专辑推荐
自然科学 | 理论物理专著 | 粒子宇宙生命 | 原版英文专著(更新中) |
» 猜你喜欢
真诚求助:手里的省社科项目结项要求主持人一篇中文核心,有什么渠道能发核心吗
已经有8人回复
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有5人回复
论文投稿,期刊推荐
已经有6人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
孩子确诊有中度注意力缺陷
已经有14人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有5人回复
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
简单回复
2016-11-02 20:03
回复
五星好评 顶一下,感谢分享!
muxinjin3楼
2016-11-02 21:22
回复
五星好评 顶一下,感谢分享!
2016-11-02 22:38
回复
五星好评 顶一下,感谢分享!
ha16685楼
2016-11-04 00:40
回复
五星好评 顶一下,感谢分享!
ufemach6楼
2016-11-04 08:29
回复
五星好评 顶一下,感谢分享!
Ulearner7楼
2016-11-06 15:41
回复
五星好评 顶一下,感谢分享!
2016-11-06 17:18
回复
五星好评 顶一下,感谢分享!
Quan.9楼
2016-11-07 06:35
回复
五星好评 顶一下,感谢分享!
wangwenju10楼
2016-11-07 07:56
回复
五星好评 顶一下,感谢分享!
owenyx_198111楼
2016-11-07 11:29
回复
五星好评 顶一下,感谢分享!
c2002z12楼
2016-11-07 18:53
回复
五星好评 顶一下,感谢分享!
fortran_1913楼
2016-11-10 19:28
回复
五星好评 顶一下,感谢分享!
mutouye14楼
2017-05-03 07:37
回复
五星好评 顶一下,感谢分享!
shuxjin15楼
2018-02-07 17:10
回复
五星好评 感谢分享!













回复此楼