| 查看: 2919 | 回复: 72 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
[资源]
Advanced Modern Physics... Theoretical Foundations
|
||
|
Contents Preface 1. Introduction vii 1 2. Quantum Mechanics (Revisited) 2.1 Linear Vector Spaces . 2.1.1 Three- Dimensional Vectors 2.1.2 n- Dimensions . 2.2 Hilbert Space . 2.2.1 Example . 2.2.2 Definition . 2.2.3 Relation to Linear Vector Space 2.2.4 Abstract State Vector 2.3 Linear Hermitian Operators .. 2.3.1 Eigenfunctions ..... 2.3.2 Eigenstates of Position 2.4 Abstract Hilbert Space 2.4.1 Inner Product . . . . . 2.4.2 Completeness...... 2.4.3 Linear Hermitian Operators 2.4.3.1 Eigenstates .... 2.4.3.2 Adjoint Operators 2.4.4 Schrodinger Equation . . . . 2.4.4.1 Stationary States .. 2.5 Measurements . 2.5.1 Coordinate Space ix 9 9 9 10 11 11 12 13 13 14 15 16 18 18 19 19 20 20 20 23 23 23 x Advanced Modern Physics 2.5.2 Abstract Form . . . . . . . . . . 2.5.3 Reduction of the Wave Packet 2.5.4 Stern-Gerlach Experiment 2.6 Quantum Mechanics Postulates. . . 2.7 Many-Particle Hilbert Space .... 2.7.1 Simple Harmonic Oscillator . 2.7.2 Bosons . 2.7.3 Fermions 3. Angular Momentum 3.1 'franslations . 3.2 Rotations....... . . . . . 3.3 Angular Momentum Operator 3.4 Eigenvalue Spectrum. . . . . . 3.5 Coupling of Angular Momenta 3.6 Recoupling . . . . . . . . . . 3.7 Irreducible Tensor Operators 3.8 The Wigner-Eckart Theorem 3.9 Finite Rotations . 3.9.1 Properties . 3.9.2 Tensor Operators . 3.9.3 Wigner-Eckart Theorem (Completed) 3.10 Tensor Products 3.11 Vector Model 4. Scattering Theory 4.1 Interaction Picture. 4.2 Adiabatic Approach 4.3 U -Operator . . . . . . 4.4 (; -Operator for Finite Times 4.5 The S-Matrix. . . . . . . . 4.6 Time-Independent Analysis 4.7 Scattering State 4.8 'fransition Rate. . . . . . . 4.9 Unitarity . 4.10 Example: Potential Scattering 4.10.1 Green's Function (Propagator) 4.10.2 Scattering Wave Function ... 25 26 27 29 30 30 31 33 35 35 37 39 40 46 53 55 57 59 .... 61 63 64 65 66 69 69 70 72 76 77 79 83 86 89 90 90 92 Contents xi 4.10.3 T-matrix .... 93 4.10.4 Cross Section . 93 4.10.5 Unitarity .... 94 5. Lagrangian Field Theory 95 5.1 Particle Mechanics. · .... 96 5.1.1 Hamilton's Principle . . .... 96 5.1.2 Lagrange's Equations 97 5.1.3 Hamiltonian · .... 98 5.2 Continuum Mechanics (String-a Review) 101 5.2.1 Lagrangian Density 101 5.2.2 Hamilton's Principle . 102 5.2.3 Lagrange's Equation. . 103 5.2.4 Two-Vectors · ..... 103 5.2.5 Momentum Density 104 5.2.6 Hamiltonian Density. . 104 5.3 Quantization ......... 104 5.3.1 Particle Mechanics ... 104 5.3.2 Continuum Mechanics (String) 106 5.4 Relativistic Field Theory 108 5.4.1 Scalar Field. . . 109 5.4.2 Stress Tensor . . . 111 5.4.3 Dirac Field ..... 117 5.4.4 Noether's Theorem 120 5.4.4.1 Normal-Ordered Current 122 5.4.5 Electromagnetic Field . . . . . . 123 5.4.6 Interacting Fields (Dirac-Scalar) 123 6. Symmetries 125 6.1 Lorentz Invariance 125 6.2 Rotational Invariance 126 6.3 Internal Symmetries 127 6.3.1 Isospin-SU(2) 127 6.3.1.1 Isovector 127 6.3.1.2 Isospinor 131 6.3.1.3 Transformation Law 133 6.3.2 Lie Groups ...... 134 6.3.3 Sakata Model-SU (3) . . . . . 138 xii Advanced Modern Physics 6.3.3.1 Dirac 'friplet . . . . . . . . . . . 6.3.3.2 Scalar Octet . 6.3.3.3 Interacting Fields (Dirac-Scalar) 6.4 Phase Invariance . . . . . . . . . . 6.4.1 Global Phase Invariance . 6.4.2 Local Phase Invariance 6.5 Yang-Mills Theories 6.6 Chiral Symmetry. . . . . . . . . 6.6.1 a-Model . 6.6.2 Spontaneous Symmetry Breaking 6.7 Lorentz 'fransformations . 139 141 142 142 142 143 145 151 156 158 162 7. Feynman Rules 7.1 Wick's Theorem . 7.2 Example (Dirac-Scalar) . 7.2.1 Scattering Amplitudes. 7.2.2 Self-Energies .... 7.2.3 Vacuum Amplitude 7.3 Feynman Diagrams . 7.4 Feynman Rules . 7.5 Cancellation of Disconnected Diagrams 7.6 Mass Renormalization . . . . . . . . . . 8. Quantum Electrodynamics (QED) 8.1 Classical Theory 8.2 Hamiltonian .. 8.3 Quantization .. 8.4 Photon Propagator. 8.5 Second-Order Processes 8.5.1 Scattering Amplitudes . 8.5.2 Self-Energies .... 8.6 QED With Two Leptons 8.7 Cross Sections . . . . . . . 8.7.1 e- + p,- ~ e- + p,- 8.7.1.1 Scattering Amplitude 8.7.1.2 Cross Section . . . . . 8.7.1.3 'fraces . 8.7.1.4 Cross Section (Continued) . 163 164 171 172 175 176 177 180 182 185 187 187 188 189 191 196 196 198 200 200 200 201 201 205 206 Contents 8.7.1.5 Limiting Cases .. 8.7.1.6 M¢ller Scattering 872 ++ - ++- .. e e ~ J . L J.L ••.• 8.7.2.1 Scattering Amplitude 8.7.2.2 Cross Section .. 8.7.2.3 Limiting Cases . 8.7.2.4 Colliding Beams 8.8 QED in External Field .... 8.8.1 Nuclear Coulomb Field 8.8.2 Bremsstrahlung .... 8.8.3 Pair Production . . . . . 8.9 Scattering Operator Si xt in Order e 3 .. 8.10 Feynman Rules for QED . 8.10.1 General Scattering Operator 8.10.2 Feynman Diagrams . 8.10.3 Feynman Rules . 8.10.3.1 Coordinate Space . 8.10.3.2 Momentum Space xiii 208 209 210 210 211 214 214 214 216 217 218 219 221 221 222 223 223 223 9. Higher-Order Processes 9.1 9.2 9.3 9.4 9.5 Example-Scattering in External Field .... 9.1.1 Feynman Diagrams 9.1.2 First-Order....... 9.1.3 Vertex Insertion ... 9.1.4 Vacuum Polarization 9.1.5 Self-Energy Insertions Ward's Identity. . . . . Electron Self-Energy . . 9.3.1 General Form 9.3.2 Evaluation . . 9.3.3 Mass Renormalization . Vertex . 9.4.1 General Form . 9.4.2 Ward's Identity 9.4.3 Evaluation ... . 9.4.4 The Constant L 9.4.5 The Infrared Problem . 9.4.6 Schwinger Moment. . . External Lines and Wavefunction Renormalization 225 225 226 226 226 226 227 228 228 229 230 232 234 234 235 236 238 239 240 243 xiv 9.6 9.7 Advanced Modern Physics 9.5.1 Cancellation of Divergences. Vacuum Polarization. . 9.6.1 Evaluation .. 9.6.2 General Form .... 9.6.3 Limiting Cases . 9.6.4 Insertion .... 9.6.5 Charge Renormalization. . 9.6.6 Charge Strength . . . . Renormalization Theory . . . 9.7.1 Proper Self-Energies . 9.7.2 Proper Vertex . 9.7.3 Ward's Identity . 9.7.4 Ward's Vertex Construct 9.7.5 Finite Parts . 9.7.6 Proof of Renormalization 9.7.7 The Renormalization Group 247 247 248 249 250 250 252 254 255 255 256 257 259 260 262 264 10. Path Integrals 10.1 Non-Relativistic Quantum Mechanics with One Degree of Freedom . 10.1.1 General Relations . 10.1.2 Infinitesimals . . . . . . . . . . . . . . . . 10.1.3 Thansition Amplitude and Path Integral . 10.1.4 Classical Limit . 10.1.5 Superposition . 10.1.6 Matrix Elements . . . . . . . . . . . . 10.1.7 Crucial Theorem of Abers and Lee . 10.1.8 Functional Derivative . 10.1.9 Generating Functional. 10.2 Many Degrees of Freedom .. 10.2.1 Gaussian Integrals ... 10.3 Field Theory . . . . . . . . . . 10.3.1 Fields as Coordinates 10.3.2 Measure. . . . . . . . 10.3.3 Generating Functional. 10.3.4 Convergence . . . . . . 10.3.4.1 Euclidicity Postulate. 10.3.4.2 Adiabatic Damping 10.4 Scalar Field . . . . . . . . . . . . . . . . 265 265 266 268 270 272 272 273 275 276 279 279 280 282 282 283 283 283 283 284 285 Contents xv 10.4.1 Generating Functional for Free Scalar Field. 285 10.4.1.1 Applications 287 10.4.2 Interactions. . . . . 289 10.5 Fermions . . . . . . . . . . . 290 10.5.1 Grassmann Algebra . . 290 10.5.2 Functional Derivative 291 10.5.3 Functional Integration. 291 10.5.4 Integrals . . 292 10.5.5 Basic Results. . . . . . . . . . 292 10.5.6 Generating Functional for Free Dirac Field 294 10.5.6.1 Applications ..... 296 10.5.7 Interactions (Dirac-Scalar) 297 10.6 Electromagnetic Field . . . . . . . 298 11. Canonical Transformations for Quantum Systems 299 11.1 Interacting Bose System . . . . . . . . . . 300 11.1.1 Pseudopotential . . . . . . . . . . 300 11.1.2 Special Role of the Ground State. . 301 11.1.3 Effective Hamiltonian . . . . 302 11.1.4 Bogoliubov Transformation . . 303 11.1.5 Discussion of Results 305 11.1.5.1 Excitation Spectrum . 305 11.1.5.2 Depletion . . . . . . . 306 11.1.5.3 Ground-State Energy 308 11.1.6 Superfiuid 4He .... 309 11.2 Superconductors . . . . . . . . . . . . 309 11.2.1 Cooper Pairs. . . . . . . . . . . 309 11.2.2 Bogoliubov- Valatin Transformation 310 11.2.2.1 Pairing . . . . . . . . . . . 310 11.2.2.2 Thermodynamic Potential. 311 11.2.2.3 Wick's Theorem . . . 312 11.2.2.4 Diagonalization of K o 314 11.2.2.5 Gap Equation .. 316 11.2.3 Discussion of Results 316 11.2.3.1 Particle Number . . . 316 11.2.3.2 Ground-State Thermodynamic Potential.. 317 11.2.3.3 Ground-State Energy 318 11.2.3.4 Excitation Spectrum . 318 11.2.3.5 Momentum Operator 319 xvi Advanced Modem Physics 11.2.3.6 Quasiparticle Spectrum . . . . . . . 11.2.3.7 Calculation of the Energy Gap ~ .. 11.2.3.8 Quasiparticle Interactions . . . . . 12 . Problems Appendix A Multipole Analysis of the Radiation Field A.1 Vector Spherical Harmonics . . A.2 Plane-Wave Expansion .. A.3 'fransition Rate. . . . . . . A.4 Arbitrary Photon Direction . Appendix B Functions of a Complex Variable B.1 Convergence ..... B.2 Analytic Functions . . B.3 Integration .... B.4 Cauchy's Theorem B.5 Cauchy's Integral. B.6 Taylor's Theorem B.7 Laurent Series .. B.8 Theory of Residues. B.9 Zeros of an Analytic Function . B.10 Analytic Continuation . . B.10.1 Standard Method B.10.2 Uniqueness ..... Appendix C Electromagnetic Field C.1 Lagrangian Field Theory C.2 Stress Tensor . C.3 Free Fields . C.4 Quantization . C.5 Commutation Relations C.6 Interaction With External Current C.6.1 Hamiltonian C.6.2 Quantization........ Appendix D Irreducible Representations of SU(n) D.1 Young Tableaux and Young Operators .. .... 319 320 322 323 369 370 373 375 379 383 383 383 384 385 385 387 387 387 389 389 390 391 393 394 395 395 397 399 401 402 404 407 409 Contents D.2 Adjoint Representation ..... D.3 Dimension of the Representation D.4 Outer Product . . . . . . . D.5 SU(n-1) Content of SU(n) . D.6 Some Examples . D.6.1 Angular Momentum-SU(2) D.6.2 Sakata Model-SU(3) .... D.6.3 Giant Resonances-SU(4) .. xvii 410 412 412 413 414 414 415 417 Appendix E Lorentz 'fransformations in Quantum Field Theory 419 E.1 Scalar Field . E.1.1 States . E.1.2 Lorentz 'fransformation E.1.3 Generators ..... E.1.4 Commutation Rules .. E.2 Dirac Field . . . . . . . . . . . E.2.1 Lorentz 'fransformation Appendix F Green's Functions and Other Singular Functions F.! Commutator at Unequal Times .. F.2 Green's Functions . . . . . . . F.2.1 Boundary Conditions F.3 Time-Ordered Products .... F.3.1 Scalar Field. . . . . . F. 3.2 Electromagnetic Field F.3.3 Dirac Field . F.3.4 Vector Field . . . . . Appendix G Dimensional Regularization 420 420 422 423 426 427 427 429 429 434 437 439 439 440 440 442 443 G.1 Dirichlet Integral . 444 G.2 Basic Relation . . 445 G.3 Complex n-plane . 446 G.4 Algebra . . . . . . 447 G.5 Lorentz Metric . . 448 G.6 l'-Matrix Algebra. 449 G.7 Examples . . . . . . . . . . . . . . . 449 G.7.1 Convergent Momentum Integrals.. 450 G.7.2 Vacuum Tadpoles . . . . . . . . . . . . .. 450 xviii Advanced Modern Physics Go703 Vacuum Polarization 0 0 0 0 0 0 0 0 0 0 0 0 Appendix H Path Integrals and the Electromagnetic Field HoI Faddeev-Popov Identity Ho2 Application 0 0 0 0 0 0 0 Ho3 Generating Functional 0 Ho4 Ghosts 0 0 0 0 0 0 0 Ho5 Photon Propagator 0 0 0 Appendix I Metric Conversion Bibliography Index ..... 450 453 453 455 457 458 458 461 463 467 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Advanced_Modern_Physics..._Theoretical_Foundations_-_John_Dirk_Walecka_-_(_World_Scientific_Publishing_-_2010_-_pp.497).pdf
2016-09-19 22:37:05, 26.1 M
» 猜你喜欢
博士读完未来一定会好吗
已经有23人回复
导师想让我从独立一作变成了共一第一
已经有7人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有11人回复
读博
已经有4人回复
JMPT 期刊投稿流程
已经有4人回复
心脉受损
已经有5人回复
Springer期刊投稿求助
已经有4人回复
小论文投稿
已经有3人回复
申请2026年博士
已经有6人回复
73楼2021-02-19 09:18:23
简单回复
applaq2楼
2016-09-19 22:42
回复
五星好评 顶一下,感谢分享!
2016-09-20 05:51
回复
五星好评 顶一下,感谢分享!
2016-09-20 06:18
回复
五星好评 顶一下,感谢分享!
2016-09-20 18:22
回复
五星好评 顶一下,感谢分享!
askuyue6楼
2016-09-20 18:40
回复
五星好评 顶一下,感谢分享!
hong_bin7楼
2016-09-20 19:25
回复
五星好评 顶一下,感谢分享!
2016-09-20 21:44
回复
五星好评 顶一下,感谢分享!
keda9楼
2016-09-20 22:30
回复
五星好评 顶一下,感谢分享!
lishucai10楼
2016-09-20 23:06
回复
五星好评 顶一下,感谢分享!
wangjinqiabc11楼
2016-09-21 00:27
回复
五星好评 顶一下,感谢分享!
2016-09-21 01:17
回复
五星好评 顶一下,感谢分享!
zbxue13楼
2016-09-21 02:12
回复
五星好评 顶一下,感谢分享!
ha166814楼
2016-09-21 02:31
回复
五星好评 顶一下,感谢分享!













回复此楼