查看: 5100  |  回复: 102
【奖励】 本帖被评价86次,作者pkusiyuan增加金币 70.4

pkusiyuan

银虫 (正式写手)


[资源] Essentials of Heat transfer (Cambridge University Press, 2011)

Preface page xvii
Acknowledgments xxi
Guide to Instructors and Students xxiii
1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Applications and History 1
1.1.1 Heat Transfer 3
1.1.2 Applications 4
1.1.3 History, Frontiers, and Integration*
1.2 Units and Normalization (Scaling) 11
1.2.1 Units 11
1.2.2 Normalization (Scaling) 13
1.3 Thermal Systems 13
1.3.1 Thermodynamic Properties 14
1.3.2 Thermal Nonequilibrium 14
1.3.3 Control Volume and Control Surface 15
1.4 Principal Energy Carriers and Heat Flux Vector 18
1.4.1 Macroscopic Heat Transfer Mechanisms 18
1.4.2 Atomic-Level Heat Carriers (Heat Transfer Physics) 20
1.4.3 Net Heat Transfer Rate Q|A 23
1.4.4 Magnitude and Representation of q 25
1.5 Heat Transfer Materials and Heat Flux Tracking 28
1.5.1 Three Phases of Matter: Intermolecular and
Intramolecular Forces*
1.5.2 Microscale Energies of Matter: Discrete and Continuous
Energies*
1.5.3 Multiphase Heat Transfer Medium: Composites 29
1.5.4 Fluid Motion 29
1.5.5 Intramedium and Intermedium Heat Transfer 32
1.5.6 Heat Flux Vector Tracking in Various Phases 32
* This section is found on the Web at www.cambridge.org/kaviany.
vii
viii Contents
1.6 Conservation of Energy 34
1.7 Conservation of Mass, Species, and Momentum*
1.7.1 Conservation of Mass*
1.7.2 Conservation of Species*
1.7.3 Conservation of Momentum*
1.7.4 Other Conserved Quantities*
1.8 Scope 45
1.9 Summary 46
1.10 References*
1.11 Problems 48
1.11.1 Heat Flux Vector Tracking 48
1.11.2 Integral-Volume Energy Equation 57
2 Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.1 Nonuniform Temperature Distribution: Differential
(Infinitesimal)-Volume Energy Equation 68
2.1.1 Physical Interpretation of Divergence of q 70
2.1.2 Relation between Volumetric Differentiation and Surface
Integration 72
2.2 Uniform Temperature in One or More Directions: Energy
Equation for Volumes with One or More Finite Lengths 76
2.2.1 Integral-Volume Energy Equation 76
2.2.2 Combined Integral- and Differential-Length Energy
Equation 81
2.2.3 Discrete Temperature Nonuniformity:
Finite-Small-Volume Energy Equation*
2.2.4 Summary of Selection of Energy Equation Based on
Uniformity or Nonuniformity of Temperature 85
2.3 Thermal Energy Conversion Mechanisms 86
2.3.1 Chemical- or Physical-Bond Energy Conversion 87
2.3.2 Electromagnetic Energy Conversion 96
2.3.3 Mechanical Energy Conversion 111
2.3.4 Summary of Thermal Energy Conversion Mechanisms 119
2.4 Bounding-Surface and Far-Field Thermal Conditions 120
2.4.1 Continuity of Temperature across Bounding Surface* 121
2.4.2 Bounding-Surface Energy Equation 121
2.4.3 Prescribed Bounding-Surface Thermal Conditions*
2.4.4 Far-Field Thermal Conditions*
2.5 Heat Transfer Analysis*
2.5.1 Integration of Differential-Volume Energy Equation*
2.5.2 Single- and Multidimensional Heat Flow*
2.5.3 Time Dependence and Steady State*
* This section is found on theWeb at www.cambridge.org/kaviany.
Contents ix
2.5.4 Thermal Circuit Models*
2.5.5 Summary of Methodology for Heat Transfer Analysis*
2.5.6 Solution Format for End-of-Chapter Problems*
2.6 Summary 123
2.7 References*
2.8 Problems 124
2.8.1 Finite- and Differential-Length Energy Equation 124
2.8.2 Energy Conversion Mechanisms (to and from Thermal
Energy) 133
2.8.3 Bounding-Surface Thermal Conditions 145
2.8.4 General*
3 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.1 Microscale Heat Storage and Specific Heat Capacity cp 154
3.1.1 Gases: Thermal Fluctuation Motion 155
3.1.2 Solids: Lattice Vibration and Phonon 157
3.1.3 Liquids: Solid-Like versus Gas-Like 159
3.1.4 Thermal Materials: From Zero to Infinite Heat Capacity 160
3.2 Microscale Conduction Heat Carriers and Thermal
Conductivity k 163
3.2.1 Gases: Thermal Fluctuation Motion and Mean-Free Path λf 165
3.2.2 Solids: Electrons and Phonons and Their Mean-Free
Paths λe and λp 169
3.2.3 Liquids 180
3.2.4 Composites: Local Thermal Equilibrium and Effective
Conductivity 180
3.2.5 Thermal Materials: From Ideal Insulators to Ideal
Conductors 184
3.3 Steady-State Conduction 191
3.3.1 One-Dimensional, Intramedium Conduction: Electrical
Circuit Analogy and Thermal Resistance Rk(◦C/W) 194
3.3.2 One-Dimensional Treatment of Composites 203
3.3.3 Thermal Circuit Analysis 215
3.3.4 Conduction Thermometry*
3.3.5 Contact Resistance 221
3.3.6 Conduction and Energy Conversion 225
3.3.7 Thermoelectric Coolers 230
3.3.8 Multidimensional Conduction from Buried and Surface
Objects*
3.4 Transient Conduction 240
3.4.1 Heat Conductivity versus Capacity: Thermal Diffusivity α 240
* This section is found on the Web at www.cambridge.org/kaviany.
x Contents
3.4.2 Short and Long Elapsed-Time Behavior: Fourier
Number Fo 242
3.4.3 Distributed versus Lumped Capacitance: Internal-External
Conduction Number Nk 243
3.5 Distributed-Capacitance (Nonuniform Temperature)
Transient: T = T (x, t) 243
3.5.1 Derivation of Temperature Distribution for Semi-Infinite
Slab: Thermal Effusivity (ρcpk)1/2 252
3.5.2 Penetration Depth δα, Penetration Fourier Number Foδ,
and Penetration Speed uδ 258
3.5.3 Time-Dependent Surface Temperature: Semi-Infinite Slab*
3.5.4 Thermal Diffusivity Meter*
3.6 Lumped-Capacitance (Uniform Temperature) Transient:
Internal-External Conduction Number Nk,i < 0.1, T = T (t) 263
3.6.1 Single Node with Constant, Prescribed Surface Heat
Transfer Q1 266
3.6.2 Single Node with Resistive Surface Heat Transfer Qk,1-2(t) 268
3.6.3 Multiple Nodes*
3.7 Discretization of Medium into Finite-Small Volumes*
3.7.1 One-Dimensional Transient Conduction*
3.7.2 Two-Dimensional Transient Conduction*
3.7.3 Nonuniform Discretization*
3.8 Conduction and Solid–Liquid Phase Change: Stefan
Number Stel*
3.9 Thermal Expansion and Thermal Stress*
3.10 Summary 273
3.11 References*
3.12 Problems 275
3.12.1 Microscales of Specific Heat Capacity and Thermal
Conductivity 275
3.12.2 Thermal Conduction Resistance and Thermal Circuit
Analysis 281
3.12.3 Conduction Contact Resistance 290
3.12.4 Conduction and Energy Conversion and Thermoelectric
Cooling 294
3.12.5 Multidimensional Conduction 302
3.12.6 Distributed-Capacitance Transient Conduction and
Penetration Depth 307
3.12.7 Lumped-Capacitance Transient Conduction 315
3.12.8 Multinode Systems and Finite-Small-Volume Analysis*
* This section is found on theWeb at www.cambridge.org/kaviany.
Contents xi
3.12.9 Solid–Liquid Phase Change 323
3.12.10 Thermal Expansion and Thermal Stress*
3.12.11 General*
4 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
4.1 Microscale Radiation Heat Carrier: Photon and Surface
Thermal Radiation Emission 326
4.1.1 Thermal Radiation 326
4.1.2 Ideal Photon Emission: Emissive Power Eb,λ, Eb 326
4.1.3 Band Fraction F0-λT 330
4.1.4 Deviation from Ideal Emission: Emissivity r 334
4.2 Interaction of Irradiation and Surface 337
4.2.1 Surface-Radiation Properties: Absorptivity αr,
Reflectivity ρr, and Transmissivity τr 339
4.2.2 Opaque Surface τr = 0 342
4.2.3 Relation among Absorptivity, Emissivity, and Reflectivity
for Opaque Surfaces 344
4.3 Thermal Radiometry*
4.3.1 Pyranometer*
4.3.2 Infrared Surface-Temperature Sensor*
4.4 Enclosure Surface-Radiation Heat Transfer Qr,i among
Gray, Diffuse, and Opaque Surfaces 347
4.4.1 Surface-Grayness Resistance Rr,(1/m2) 348
4.4.2 View-Factor Resistance Rr,F (1/m2) 350
4.4.3 Thermal Circuit Analysis of Enclosures 356
4.4.4 Two-Surface Enclosures 360
4.4.5 Radiation Insulators (Shields) 362
4.4.6 Three-Surface Enclosures 366
4.4.7 Three-Surface Enclosures with One Surface Having
˙S
− Q = 0 371
4.5 Prescribed Irradiation and Nongray Surfaces*
4.5.1 Laser Irradiation (qr,i)l*
4.5.2 Solar Irradiation (qr,i)s*
4.5.3 Flame Irradiation (qr,i)f *
4.5.4 Nongray Surfaces*
4.6 Inclusion of Substrate 375
4.6.1 Steady-State, Series Conduction-Surface Radiation,
Conduction-Radiation Number Nr 375
4.6.2 Transient Heat Transfer: Lumped Capacitance for
Nr < 0.1 384
4.7 Summary 388
4.8 References*
* This section is found on the Web at www.cambridge.org/kaviany.
xii Contents
4.9 Problems 389
4.9.1 Volumetric and Surface-Radiation Fundamentals 389
4.9.2 View Factor 393
4.9.3 Two-Surface, Opaque, Diffuse Gray Enclosures 394
4.9.4 Three-Surface, Opaque, Diffuse Gray Enclosures 402
4.9.5 Nongray Surfaces and Prescribed Irradiation 405
4.9.6 Inclusion of Substrate 410
4.9.7 General*
5 Convection: Unbounded Fluid Streams*
5.1 One-Dimensional Conduction-Convection Energy Equation*
5.2 Parallel Conduction-Convection Resistance Rk,u(◦C/W)
and Conduction-Convection Number Nu ≡ PeL*
5.3 Evaporation Cooling of Gaseous Streams*
5.3.1 Cooling of Gaseous Streams*
5.3.2 Cooling of Liquid and Gaseous Streams by Wall Seepage
and Surface Evaporation*
5.4 Combustion Heating of Gaseous Streams*
5.4.1 Conservation Equations, Adiabatic Flame Temperature,
and Far-Field Thermal Conditions*
5.4.2 Preheat and Reaction Regions*
5.4.3 Adiabatic Flame Speed uf ,1 and Thickness δ*
5.4.4 Nonadiabatic Flame Speed: Lateral Heat Losses*
5.4.5 Effect of Thermal Conductivity: Effective Thermal
Conductivity*
5.4.6 Volumetric Radiation Heat Transfer: Radiant (Photon)
Conductivity kr*
5.4.7 Effect of Free-Stream Turbulence: Turbulence
Intensity Tu*
5.5 Joule Heating of Gaseous Streams*
5.5.1 Thermal Plasma Generators*
5.5.2 Thermal Plasma Classification*
5.5.3 Integral-Length Analysis*
5.6 Gas-Stream Volumetric Radiation*
5.7 Summary*
5.8 References*
5.9 Problems*
6 Convection: Semi-Bounded Fluid Streams . . . . . . . . . . . . . . . . . . . 426
6.1 Flow and Surface Characteristics 427
6.2 Semi-Infinite Plate as a Simple Geometry 430
6.2.1 Local Surface-Convection Resistance Rku(◦C/W) 430
* This section is found on theWeb at www.cambridge.org/kaviany.
Contents xiii
6.2.2 Viscous versus Thermal Boundary Layer: Prandtl
Number Pr 431
6.2.3 Boundary-Layer Flow with Zero Prandtl Number:
Axial-Lateral P′ eclet Number PeL 432
6.2.4 Dimensionless Surface-Convection Conductance: Nusselt
Number NuL ≡ Nku,f and Heat Transfer Coefficient h 439
6.2.5 Nonzero Prandtl Number: Reynolds Number ReL 444
6.2.6 Average Nusselt Number NuL and Average
Surface-Convection Resistance RkuL 450
6.3 Parallel Turbulent Flow: Transition Reynolds Number ReL,t 454
6.3.1 Turbulent Convection Heat Flux*
6.3.2 Microscale Turbulent Convection: Turbulent Conductivity
kt and Turbulent Mixing Length λt* 457
6.3.3 Variation of Turbulent Mixing Length Near Solid Surface*
6.3.4 Averaged, Laminar-Turbulent Nusselt Number 457
6.4 Perpendicular Flows: Impinging Jets 461
6.5 Thermobuoyant Flows 466
6.5.1 Laminar Flow Adjacent to Vertical Plates: Grashof and
Rayleigh Numbers GrL, RaL 469
6.5.2 Turbulent Thermobuoyant Flow over Vertical Plate 475
6.5.3 Combined Thermobuoyant-Forced Parallel Flows 476
6.6 Liquid-Gas Phase Change 478
6.6.1 Theoretical Maximum Heat Flux for Evaporation and
Condensation qmax (Kinetic Limit)*
6.6.2 Bubble and Film Evaporation: Pool Boiling Regimes 481
6.6.3 Dropwise and Film Condensation*
6.6.4 Impinging-Droplets Surface Convection with Evaporation*
6.7 Summary of Nusselt Number Correlations 490
6.7.1 Sphere: Forced-Flow Regimes and Correlations 490
6.7.2 Tabular Presentation of Correlations for Some Flows and
Geometries 493
6.8 Inclusion of Substrate 505
6.8.1 Steady-State, Series Conduction-Surface Convection:
Conduction-Convection or Biot Number Nku,s ≡ BiL 506
6.8.2 Steady-State Simultaneous Conduction-Surface
Convection: Extended Surface and Fin Efficiency ηf 514
6.8.3 Transient: Lumped Capacitance for BiL < 0.1 523
6.8.4 Hot-Wire Anemometry*
6.9 Surface-Convection Evaporation Cooling*
6.10 Summary 533
6.11 References*
* This section is found on the Web at www.cambridge.org/kaviany.
xiv Contents
6.12 Problems 534
6.12.1 Laminar Parallel-Flow Surface Convection 534
6.12.2 Turbulent Parallel-Flow Surface Convection 537
6.12.3 Impinging-Jet Surface Convection 538
6.12.4 Thermobuoyant-Flow Surface Convection 541
6.12.5 Boiling and Condensation Surface Convection 545
6.12.6 Impinging-Droplets Surface Convection 547
6.12.7 Surface Convection with Other Flows and Geometries 549
6.12.8 Inclusion of Substrate 555
6.12.9 Surface-Convection Evaporation Cooling*
6.12.10 General*
7 Convection: Bounded Fluid Streams . . . . . . . . . . . . . . . . . . . . . . . 570
7.1 Flow and Surface Characteristics 570
7.2 Tube Flow and Heat Transfer 574
7.2.1 Velocity-Area Averaged Fluid Temperature 575
7.2.2 Tube-Surface Temperature Ts: Uniform or Varying 576
7.2.3 Local and Average Surface-Convection Resistance:
Nusselt Number NuD, NuD 576
7.2.4 Negligible Axial Conduction: Large P′ eclet Number 578
7.2.5 Axial Variation of Fluid Temperature for Uniform Ts:
Effectiveness he and Number of Transfer Units NTU 578
7.2.6 Average Convection Resistance RuL(◦C/W) 583
7.2.7 Prescribed Uniform Surface Heat Flux qs 584
7.3 Laminar and Turbulent Flows, Entrance Effect,
Thermobuoyant Flows, and Phase Change 588
7.3.1 Laminar versus Turbulent Flow: Transition
Reynolds Number ReD,t 588
7.3.2 Developing versus Fully Developed Region, Entrance
Length Lδ: Laminar Flow 589
7.3.3 Entrance Length Lδ: Turbulent Flow 590
7.3.4 Thermobuoyant Flows 590
7.3.5 Liquid-Gas Phase Change 591
7.4 Summary of Nusselt Number Correlations 593
7.4.1 Laminar Flow: Tube Cross-Sectional Geometry
Dependence 593
7.4.2 Turbulent Flow: Geometric Universality of Using
Hydraulic Diameter Dh 595
7.4.3 Discontinuous Solid Surfaces and Large Specific Surface
Areas: Geometric Universality of Particle Diameter Dp 596
7.4.4 Extended Surfaces: Overall Surface Efficiency 599
* This section is found on theWeb at www.cambridge.org/kaviany.
Contents xv
7.4.5 Tabular Presentation of Correlation for Some
Geometries 599
7.5 Inclusion of Bounding Solid 609
7.6 Heat Exchange between Two Bounded Streams 614
7.6.1 Exit Temperatures in Coaxial Heat Exchangers 615
7.6.2 Heat Exchanger Effectiveness he and Number of Transfer
Units NTU 618
7.6.3 he-NTU Relation for Other Heat Exchangers 620
7.6.4 Heat Exchanger Analysis 622
7.6.5 Overall Thermal Resistance in Heat Exchangers R         627
7.6.6 Dielectric and Inert Heat-Transfer Fluids*
7.7 Summary 628
7.8 References*
7.9 Problems 629
7.9.1 Average Convection Resistance and he-NTU 629
7.9.2 Tubes and Ducts: Hydraulic Diameter 632
7.9.3 High Specific Surface Area: Particle Diameter 637
7.9.4 Inclusion of Bounding Solid and Other Flows 643
7.9.5 Heat Exchangers 648
7.9.6 Overall Thermal Resistance in Heat Exchangers R         654
7.9.7 General*
8 Heat Transfer in Thermal Systems*
8.1 Primary Thermal Functions*
8.1.1 Primary Functions of Heat Transfer Media*
8.1.2 Primary Thermal Functions of Bounding Surfaces*
8.1.3 Heat Transfer Material*
8.2 Thermal Engineering Analysis*
8.2.1 Simplifications, Approximations, and Assumptions:
Modeling*
8.2.2 Nodal Energy Equation*
8.2.3 Simultaneous Inclusion of Various Heat Transfer
Mechanisms*
8.2.4 Optimization*
8.3 Examples*
8.4 Summary*
8.5 References*
8.6 Problems*
Nomenclature*
Glossary*
Answers to Problems 665
* This section is found on the Web at www.cambridge.org/kaviany.
xvi Contents
Appendix A: Some Thermodynamic Relations*
A.1 Simple, Compressible Substance*
A.1.1 Internal Energy and Specific Heat Capacity at Constant
Volume*
A.1.2 Specific Enthalpy and Specific Heat Capacity at Constant
Pressure*
A.2 Phase Change and Heat of Phase Change*
A.3 Chemical Reaction and Heat of Reaction*
A.4 References*
Appendix B: Derivation of Differential-Volume Energy Equation*
B.1 Total Energy Equation*
B.2 Mechanical Energy Equation*
B.2.1 Mass Conservation Equation*
B.2.2 Species Conservation Equation*
B.2.3 Momentum Conservation Equation*
B.2.4 Mechanical Energy Equation*
B.3 Thermal Energy Equation*
B.4 Thermal Energy Equation: Enthalpy Formulation*
B.5 Thermal Energy Equation: Temperature Formulation*
B.6 Conservation Equations in Cartesian and Cylindrical Coordinates*
B.6.1 Cartesian Coordinates, x = (x, y, z) and u = (u, v,w)*
B.6.2 Cylindrical Coordinates, x = (r, φ, z) and u = (ur, uφ, uz)*
B.7 Bounding-Surface Energy Equation with Phase Change*
B.8 References*
Appendix C: Tables of Thermochemical and Thermophysical Properties 680
C.1 Tables
Unit Conversion, Universal Constants, Dimensionless
Numbers, Energy Conversion Relations, and Geometrical
Relations 682
Periodic Table and Phase Transitions 686
Atmospheric Thermophysical Properties*
Electrical and Acoustic Properties 689
Thermal Conductivity 693
Thermophysical Properties of Solids 701
Surface-Radiation Properties 705
Mass Transfer and Thermochemical Properties of Gaseous Fuels*
Thermophysical Properties of Fluids 708
Liquid-Gas Surface Tension*
Saturated Liquid-Vapor Properties*
C.2 References*
Subject Index 717
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:emuch2018@163.com
  • 附件 1 : Essentials_of_Heat_transfer_(Cambridge_University_Press,_2011).pdf
  • 2015-03-08 13:53:41, 17.08 M

» 收录本帖的淘贴专辑推荐

纳米技术与能源及模拟 好书!好读! 仿真建模与计算 新能源
专业书籍 氢能与电动汽车 科研学习

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

holgersun

新虫 (初入文坛)


★★★★★ 五星级,优秀推荐

顶一下,感谢分享!太棒了
23楼2015-03-11 12:34:26
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

holgersun

新虫 (初入文坛)


好书,感谢分享。
24楼2015-03-11 13:54:02
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Yummy_world

铜虫 (初入文坛)


★★★★★ 五星级,优秀推荐

虽然有了,但还是顶一下,感谢分享!
42楼2015-03-21 09:57:00
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

fxluman

金虫 (著名写手)


★★★★★ 五星级,优秀推荐

好好学习一下……
47楼2015-04-04 01:06:03
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
nanost2楼
2015-03-08 15:16   回复  
五星好评  顶一下,感谢分享!
cxl3183楼
2015-03-08 17:57   回复  
五星好评  顶一下,感谢分享!
mechtest4楼
2015-03-09 12:25   回复  
五星好评  顶一下,感谢分享!
李加伟5楼
2015-03-09 17:51   回复  
五星好评  顶一下,感谢分享!
2015-03-09 20:16   回复  
五星好评  顶一下,感谢分享!
2015-03-09 21:28   回复  
五星好评  顶一下,感谢分享!
7528792908楼
2015-03-10 09:04   回复  
五星好评  顶一下,感谢分享!
2015-03-10 10:27   回复  
五星好评  顶一下,感谢分享!
nty16810楼
2015-03-10 10:38   回复  
五星好评  顶一下,感谢分享!
caoshl11楼
2015-03-10 13:11   回复  
五星好评  顶一下,感谢分享!
wenhsien12楼
2015-03-10 17:27   回复  
五星好评  顶一下,感谢分享!
wangdarui13楼
2015-03-10 19:12   回复  
五星好评  顶一下,感谢分享!
muxinjin14楼
2015-03-10 20:42   回复  
五星好评  顶一下,感谢分享!
joezhu195815楼
2015-03-11 04:38   回复  
五星好评  顶一下,感谢分享!
吠陀16楼
2015-03-11 07:00   回复  
五星好评  顶一下,感谢分享!
zym100317楼
2015-03-11 08:36   回复  
五星好评  顶一下,感谢分享!
comshaf18楼
2015-03-11 08:51   回复  
五星好评  顶一下,感谢分享!
sshdage19楼
2015-03-11 09:30   回复  
五星好评  顶一下,感谢分享!
lxw20220楼
2015-03-11 11:05   回复  
五星好评  顶一下,感谢分享!
honglchen21楼
2015-03-11 11:45   回复  
五星好评  顶一下,感谢分享!
zhoulili22楼
2015-03-11 11:52   回复  
五星好评  顶一下,感谢分享!
1093125楼
2015-03-11 17:51   回复  
五星好评  顶一下,感谢分享!
cheersend26楼
2015-03-11 19:53   回复  
五星好评  顶一下,感谢分享!
liyunsuo27楼
2015-03-12 11:05   回复  
五星好评  顶一下,感谢分享!
dabu3428楼
2015-03-12 13:59   回复  
五星好评  顶一下,感谢分享!
2015-03-12 19:18   回复  
五星好评  顶一下,感谢分享!
jenny_dyy30楼
2015-03-13 14:28   回复  
五星好评  顶一下,感谢分享!
2015-03-13 14:46   回复  
五星好评  顶一下,感谢分享!
jinhesun32楼
2015-03-13 15:29   回复  
五星好评  顶一下,感谢分享!
hanup33楼
2015-03-13 16:24   回复  
五星好评  顶一下,感谢分享!
zjys588734楼
2015-03-13 20:44   回复  
五星好评  顶一下,感谢分享!
xwj00735楼
2015-03-14 07:05   回复  
五星好评  顶一下,感谢分享!
亚稳态36楼
2015-03-14 16:53   回复  
五星好评  顶一下,感谢分享!
changhezrp37楼
2015-03-14 18:30   回复  
五星好评  顶一下,感谢分享!
2015-03-15 23:07   回复  
五星好评  顶一下,感谢分享!
2015-03-16 11:02   回复  
五星好评  顶一下,感谢分享!
mechtest40楼
2015-03-18 16:41   回复  
顶一下,感谢分享!
fanuq41楼
2015-03-18 20:36   回复  
五星好评  顶一下,感谢分享!
2015-03-21 21:56   回复  
五星好评  顶一下,感谢分享!
rycheng44楼
2015-03-25 19:25   回复  
五星好评  顶一下,感谢分享!
wenhsien45楼
2015-03-26 09:33   回复  
顶一下,感谢分享!
rycheng46楼
2015-03-27 20:06   回复  
顶一下,感谢分享!
sunrise4848楼
2015-04-29 18:36   回复  
五星好评  顶一下,感谢分享!
2015-04-29 18:55   回复  
五星好评  顶一下,感谢分享!
linenxin50楼
2015-04-29 22:30   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
最具人气热帖推荐 [查看全部] 作者 回/看 最后发表
[教师之家] 争来争去没抓住重点 +6 dililafter 2020-02-26 6/300 2020-02-26 21:27 by 小虫子0511
[考研] 本科郑州大学,报考北邮网络空间安全,总分281,求调剂 +3 郑大-小时 2020-02-25 9/450 2020-02-26 20:41 by __不说
[考研] 今年扩招啦,国务院才下的通知,嘻嘻! +7 20200203 2020-02-26 10/500 2020-02-26 13:05 by 沐笙smileyj
[考研] 应用化学299分 +3 四夕两王今 2020-02-24 3/150 2020-02-26 10:06 by victery
[考研] 化工273,求调剂 +5 hx伊一 2020-02-22 6/300 2020-02-26 09:50 by houyaoxu
[考研] 985本科,工学338求调剂 +7 pi1324585 2020-02-23 12/600 2020-02-26 00:58 by fonzie
[博后之家] 请问C9博士进高校工作的难度和待遇如何? +10 幻影谜踪 2020-02-25 19/950 2020-02-25 23:09 by feng653
[考研] 药学370求调剂 +5 小明啊小明啊 2020-02-23 11/550 2020-02-25 17:19 by 大道-至简
[基金申请] 2号文之下,大家的基金申请书中还敢写预期发多少篇SCI/SSCI吗? +27 zju2000 2020-02-23 30/1500 2020-02-24 14:45 by xipha
[教师之家] 你们想…… (金币+2) +13 bdl656383 2020-02-20 13/650 2020-02-24 09:43 by xwy1027
[考研] 308求调剂 +3 一杯冰阔落 2020-02-21 3/150 2020-02-24 08:24 by xiaoguoy
[基金申请] 基础科研不唯SCI,唯论文价值:基金和职称的5篇代表作提供中文大摘要供同行专家评分。 +3 nanobiom 2020-02-22 6/300 2020-02-23 19:04 by nanobiom
[教师之家] 小诗:感恩,我人生俩大女神 (金币+5) +4 翅影成诗 2020-02-20 9/450 2020-02-23 19:03 by 翅影成诗
[考研] 295药学,有论文,求调剂。 +4 呆呆向前看 2020-02-21 15/750 2020-02-23 11:12 by 呆呆向前看
[考研] 306求调剂 +3 我叫小飞侠 2020-02-22 3/150 2020-02-22 19:57 by victery
[考研] 招收硕士研究生 +7 ymd1993 2020-02-21 7/350 2020-02-22 19:22 by 西交本科生
[考研] 294求调剂 本科中南 报考中山 +3 加油努力狗 2020-02-20 8/400 2020-02-22 15:13 by 加油努力狗
[考研] 报的理科,但不过A类理科的总分线,是否能调A类的工科? +8 左玉慧 2020-02-20 8/400 2020-02-21 07:24 by yao291598
[考研] 293求调剂 +4 雅月323 2020-02-20 5/250 2020-02-20 12:10 by orzwy
[考研] 371求调剂 +5 young974 2020-02-20 7/350 2020-02-20 08:15 by 张雨萌
信息提示
请填处理意见