当前位置: 首页 > 论文投稿 >期刊Crystals(JCR Q2, 影响因子2.589)纳米结构材料的专刊邀稿

期刊Crystals(JCR Q2, 影响因子2.589)纳米结构材料的专刊邀稿

作者 meconnie
来源: 小木虫 650 13 举报帖子
+关注

期刊“Crystals”(JCR Q2, 影响因子2.589)的Special Issue "High-Performance Heterogeneous Nanostructured Materials"
https://www.mdpi.com/journal/cry ... tructured_materials

Special Issue Information
Dear Colleagues,

A variety of key fields (including aerospace, advanced manufacturing, new energy, deep-sea technology, and transportation, etc.,) have created an urgent need for the design, fabrication, and service evaluation of new high-performance metallic structural materials. Uniformly reducing the grain size to the nanometer scale has been well recognized to substantially improve the strength of metals. However, the strengthened homogeneous nanograined metals will inevitably sacrifice other properties to a significant extent, such as ductility and thermal stability. In recent years, a new class of nanomaterials called heterogeneous nanostructured materials possessing the soft and hard mixed regions have been designed to a unique architecture, e.g., gradient phases/composition/grain size/twin spacing/lamellar, hierarchically structural grains/twins, and nanoprecipitates/second phases, from the nanometer scale to the macroscale in bulk specimens. Owing to the particular cooperative effects of strain/stress partitioning between different domains, heterogeneous structures can harvest the high strength from the hard domains and the high ductility from the soft domains, thus leading to the high strength–ductility synergy. Since some pioneering works (such as from Lu’s, Zhu’s, and Wu’s groups) reported in Nature and Science, heterogeneous nanostructured materials have been proven to effectively achieve high-performance mechanical properties, e.g., strength–ductility synergy, excellent strain hardening, enhanced resistance of fatigue, creep, and wear, and remarkable mechanical and thermal stabilities. In addition to the unprecedented mechanical properties, the heterogamous nanostructuring strategy is also beneficial for developing various multifunctional materials.

The current Special Issue aims to summarize the state of the art of research progress of various high-performance heterogeneous nanostructured metals and alloys, including (i) mechanical properties (e.g., strength, ductility, fatigue, creep, phase transformation, and wear behaviors), (ii) advanced fabrication methods (e.g., severe plastic deformation techniques, laser treatment/additive manufacturing, machining technology, etc.), and (iii) microstructure characterizations responsible for the formation and underlying plastic deformation mechanisms. Research papers related to experiments, computational simulations/high-throughput computing, and theoretical modeling are all welcomed.

Dr. Xusheng Yang
Prof. Dr. Honghui Wu
Prof. Dr. Jiaming Zhu
Guest Editors 返回小木虫查看更多

今日热帖
  • 精华评论
猜你喜欢
下载小木虫APP
与700万科研达人随时交流
  • 二维码
  • IOS
  • 安卓