当前位置: 首页 > 电化学 >JFD:动力型锂离子电池正极材料产业化论叙——三元材料篇

JFD:动力型锂离子电池正极材料产业化论叙——三元材料篇

作者 郑在奋斗
来源: 小木虫 300 6 举报帖子
+关注

狭义的三元材料指的是化学计量比的镍钴猛三组份层状正极材料,这类材料最早是由华裔学者刘兆林于1999年在新加坡A-Star下属的材料研究与工程研究所(IMRE)工作的时候报道的,之后国际上很多课题组都对这一系列的材料进行了非常细致深入的研究。而广义意义上的三元材料包含范围比较宽,锂含量非化学计量比以及宽组份的多元层状材料都可以包含在这个范畴之内。

  一般来说,国际上公认日本大阪城市大学的TsutamuOhzuku(小槻勉)和加拿大Dalhousie大学的J. R. Dahn这两个课题组对三元材料研究得最深入全面,其研究成果对产业界的影响也比较广泛。美国阿贡国家实验室(ANL)对三元材料也有深入的基础研究,但其研究成果相对而言对产业界影响并不大。

  早期NMC的研究主要集中在材料的合成工艺、电化学性能、晶体结构变化以及反应机理能方面,最近几年NMC的基础研究已经明显放缓,人们更多地关注材料的生产工艺革新、电化学性能优化、安全性、复合三元材料以及三元材料在高电压下的应用等方面的问题。

  由于美国3M公司最早申请了三元材料的相关专利,而3M是按照镍猛钴(NMC)的循序来命名三元材料的,所以国际上普遍称呼三元材料为NMC。但是国内出于发音的习惯一般称为镍钴猛(NCM),这样就带来了三元材料型号的误解,因为三元材料的名称比如333、442、532、622、811等都是以NMC的顺序来命名的。而BASF则是因为购买了美国阿贡国家实验室(ANL)的相关专利,为了显示自己与3M的“与众不同”并且拓展中国市场,而故意称三元材料为NCM。

  三元材料(NMC)实际上是综合了LiCoO2、LiNiO2和LiMnO2三种材料的优点,由于Ni 、Co和Mn之间存在明显的协同效应,因此NMC的性能好于单一组分层状正极材料,而被认为是最有应用前景的新型正极材料之一。

  三种元素对材料电化学性能的影响也不一样,一般而言,Co能有效稳定三元材料的层状结构并抑制阳离子混排,提高材料的电子导电性和改善循环性能。但是Co比例的增大导致晶胞参数a和c减小且c/a增大,导致容量降低。而Mn的存在能降低成本和改善材料的结构稳定性和安全性,但是过高的Mn含量将会降低材料克容量,并且容易产生尖晶石相而破坏材料的层状结构。Ni的存在使晶胞参数c和a增大且使c/a减小,有助于提高容量。但是Ni含量过高将会与Li+产生混排效应而导致循环性能和倍率性能恶化,而且高镍材料的pH值过高影响实际使用。

  在三元材料中,根据各元素配比的不同,Ni可以是+2和+3价,Co一般认为是+3价,Mn则是+4价。三种元素在材料中起不同的作用,充电电压低于4.4V(相对于金属锂负极)时,一般认为主要是Ni2+参与电化学反应形成Ni4+;继续充电在较高电压下Co3+参与反应氧化到Co4+,而Mn则一般认为不参与电化学反应。
      JFD:动力型锂离子电池正极材料产业化论叙——三元材料篇
       三元材料根据组分可以分为两个基本系列:低钴的对称型三元材料LiNixMnxCo1-2xO2和高镍的三元材料LiNi1-2yMnyCoyO2两大类型,三元材料的相图如上图所示。此外有一些其它组分,比如353、530、532等等。对称型三元材料的Ni/Mn两种金属元素的摩尔比固定为1,以维持三元过渡金属氧化物的价态平衡,代表性的产品是333和442系列三元材料,这个组分系列在美国3M专利保护范围内。这类材料由于Ni含量较低Mn含量较高晶体结构比较完整,因此具有向高压发展的潜力。

  从高镍三元NMC的化学式可以看出,为了平衡化合价,高镍三元里面Ni同时具有+2和+3价,而且镍含量越高+3价Ni越多,因此高镍三元的晶体结构没有对称型三元材料稳定。在这两大系列之外的其它一些组分,一般都是为了规避3M或者ANL、Umicore、Nichia的专利而开发出来的。比如532组分原本是SONY 和松下为了规避3M的专利的权宜之计,结果现在NMC532反倒成了全球最畅销的三元材料。

  三元材料具有较高的比容量,因此单体电芯的能量密度相对于LFP和LMO 电池而言有较大的提升。近几年,三元材料动力电池的研究和产业化在日韩已经取得了较大的进展,业内普遍认为NMC动力电池将会成为未来电动汽车的主流选择。一般而言,基于安全性和循环性的考虑,三元动力电池主要采用333、442和532这几个Ni含量相对较低的系列,但是由于PHEV/EV对能量密度的要求越来越高,622在日韩也越来越受到重视。

  三元材料的核心专利主要掌握在美国3M公司手里,阿贡国家实验室(ANL)也申请了一些三元材料(有些包含于富锂锰基层状固溶体)方面的专利,但业界普遍认为其实际意义并不及3M。

  国际上三元材料产量最大的是比利时Umicore,并且Umicore和3M形成了产研联盟。此外,韩国L&F,日本Nichia (日亚化学),Toda Kogyo( 户田工业) 也是国际上主要的三元材料生产厂家,而德国BASF则是新加入的三元新贵。值得一提的是,国际上四大电芯厂家(S O N Y、Panasonic、Samsung SDI 和LG)在三元材  料和钴酸锂正极材料方面,都有相当比例的inhouse产能,这也是这四家大厂相对于全球其它电芯厂家技术大幅领先的一个重要体现。

Sample Text

       目前NMC应用于动力电池存在的主要问题包括:
       (1)由于阳离子混排效应以及材料表面微结构在首次充电过程中的变化,造成NMC的首次充放电效率不高,首效一般都小于90%;
       (2)三元材料电芯产气较严重安全性比较突出,高温存储和循环性还有待提高;
       (3)锂离子扩散系数和电子电导率低,使得材料的倍率性能不是很理想;
       (4)三元材料是一次颗粒团聚而成的二次球形颗粒,由于二次颗粒在较高压实下会破碎,从而限制了三元材料电极的压实,这也就限制了电芯能量密度的进一步提升。

  针对以上这些问题,目前工业界广泛采用的改性措施包括:

  杂原子掺杂。为了提高材料所需要的相关方面的性能(如热稳定性、循环性能或倍率性能等),通常对正极材料进行掺杂改性研究。但是,掺杂改性往往只能改进某一方面或部分的电化学性能,而且常常会伴随着材料其它某一方面性能(比如容量等)的下降。

  NMC根据掺杂元素的不同可以分为:阳离子掺杂、阴离子掺杂以及复合掺杂。很多阳离子掺杂被研究过,但有实际效果的仅限于Mg、Al、Ti、Zr、Cr、Y、Zn这几种。一般而言,对NMC进行适当的阳离子掺杂,可以抑制Li/Ni 的阳离子混排,有助于减少首次不可逆容量。阳离子掺杂可以使层状结构更完整,从而有助于提高NMC的倍率性,还可以提高晶体结构的稳定性,这对改善材料的循环性能和热稳定性的效果是比较明显的。

  阴离子掺杂主要是掺杂与氧原子半径相近的F原子。适量地掺杂F可以促进材料的烧结,使正极材料的结构更加稳定。F掺杂还能够在循环过程中稳定活性物质和电解液之间的界面,提高正极材料的循环性能。混合掺杂一般是F和一种或者数种阳离子同时对NMC进行掺杂,应用比较广泛的是Mg-F、Al-F、Ti-F、Mg-Al-F、Mg-Ti-F这么几种组合。混合掺杂对NMC的循环和倍率性能改善比较明显,材料的热稳定性也有一定提高,是目前国际主流正极厂家采用的主要改性方法。

  NMC掺杂改性关键在于掺杂什么元素,如何掺杂,以及掺杂量的多少的问题,这就要求厂家具有一定的研发实力。NMC的杂原子掺杂既可以在前驱体共沉淀阶段进行湿法掺杂,也可以在烧结阶段进行干法掺杂,只要工艺得当都可以收到不错的效果。厂家需要根据自己的技术积累和经济状况来选择适当的技术路线,所谓条条大道通罗马,适合自家的路线就是最好的技术。

  表面包覆。NMC表面包覆物可以分为氧化物和非氧化物两种。最常见的氧化物包括MgO、Al2O3、ZrO2和TiO2这几种,常见的非氧化物主要有AlPO4、AlF3、LiAlO2、LiTiO2等。无机物表面包覆主要是使材料与电解液机械分开从而减少材料与电解液副反应,抑制金属离子的溶解,优化材料的循环性能。同时,无机物包覆还可以减少材料在反复充放电过程中材料结构的坍塌,对材料的循环  性能是有益的。NMC的表面包覆对降低高镍三元材料表面残碱含量是比较有效的,这个问题笔者后面还会谈到。

  同样,表面包覆的难点首先在于选择什么样的包覆物,再就是采用什么样的包覆方法以及包覆量的多少的问题。包覆既可以用干法包覆,也可以在前驱体阶段进行湿法包覆的,这都需要厂家需要根据自身情况选择合适的工艺路线。

  生产工艺的优化。改进生产工艺主要是为了提高NMC产品品质,比如降低表面残碱含量、改善晶体结构完整性、减少材料中细粉的含量等,这些因素都对材料的电化学性能有较大影响。比如适当调整Li/M比例,可以改善NMC的倍率性能,增加材料的热稳定性,这就需要厂家对三元材料的晶体结构有相当的理解。

Sample Text

       NMC跟其它几种正极材料的生产过程相比,有个很大的不同之处就是其独特的前驱体共沉淀生产工艺。虽然在LCO、LMO和LFP的生产当中,采用液相法生产前驱体越来越普遍,而且在高端材料生产中更是如此,但对于大多数中小企业而言固相法仍然是这几种材料的主流工艺。然而三元材料(也包括NCA和OLO),则必须采用液相法才能保证元素在原子水平的均匀混合,这是固相法无法做到的。正是有了这个独特的共沉淀工艺,使得NMC的改性相对其它几种正极材料而言更加容易,而且效果也很明显。

  目前国际主流的NMC前驱体生产采用的是氢氧化物共沉淀工艺,NaOH作为沉淀剂而氨水是络合剂,生产出高密度球形氢氧化物前驱体。该工艺的优点是可以比较容易地控制前驱体的粒径、比表面积、形貌和振实密度,实际生产中反应釜操作也比较容易。但也存在着废水(含NH3和硫酸钠)处理的问题,这无疑增加了整体生产成本。碳酸盐共沉淀工艺从成本控制的角度而言具有一定优势,即使不使用络合剂该工艺也可以生产出球形度很好的颗粒。碳酸盐工艺目前最主要的问题是工艺稳定性较差,产物粒径不容易控制。碳酸盐前驱体杂质(Na和S)含量相对氢氧化物前驱体较高而影响三元材料的电化学性能,并且碳酸盐前驱体振实密度比氢氧化物前驱体要低,这就限制了NMC能量密度的发挥。

  笔者个人认为,从成本控制以及高比表面积三元材料在动力电池中的实际应用角度来考虑,碳酸盐工艺可以作为主流氢氧化物共沉淀工艺的主要补充,需要引起国内厂家的足够重视。

  目前国内正极材料厂家普遍忽视三元材料前驱体的生产和研发,大部分厂家直接外购前驱体进行烧结。笔者这里要强调的是,前驱体对三元材料的生产至关重要,因为前驱体的品质(形貌、粒径、粒径分布、比表面积、杂质含量、振实密度等)直接决定了最后烧结产物的理化指标。可以这么说,三元材料60%的技术含量在前驱体工艺里面,而相对而言烧结工艺基本已经透明了。所以,无论是从成本还是产品品质控制角度而言,三元厂家必须自产前驱体。事实上,国际上三元材料主流厂商,包括Umicore、Nichia、L&F、Toda Kogyo无一例外的都是自产前驱体,只有在自身产能不足的情况下才适当外购。所以,国内正极厂家必须对前驱体的研发和生产引起高度重视。 返回小木虫查看更多

今日热帖
  • 精华评论
  • xinghuaxiang

    LZ对三元材料分析的很透彻啊

  • GsyfL

    最后提到对三元前驱体的研发,很赞成,好的前驱体直接决定了后面的三元材料性能,

  • 骑蜗牛上路

    楼主说的很棒,总结的很细致。

  • zhangjun1988

    说说各自的实际克容量都能达到多少?

猜你喜欢
下载小木虫APP
与700万科研达人随时交流
  • 二维码
  • IOS
  • 安卓